A survey of clinicians on the use of artificial intelligence in ophthalmology, dermatology, radiology and radiation oncology
Abstract Artificial intelligence technology has advanced rapidly in recent years and has the potential to improve healthcare outcomes. However, technology uptake will be largely driven by clinicians, and there is a paucity of data regarding the attitude that clinicians have to this new technology. I...
Enregistré dans:
Auteurs principaux: | Jane Scheetz, Philip Rothschild, Myra McGuinness, Xavier Hadoux, H. Peter Soyer, Monika Janda, James J.J. Condon, Luke Oakden-Rayner, Lyle J. Palmer, Stuart Keel, Peter van Wijngaarden |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c0dd39a13e2049d68ce2c943b58bb2f8 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Precision Radiology: Predicting longevity using feature engineering and deep learning methods in a radiomics framework
par: Luke Oakden-Rayner, et autres
Publié: (2017) -
Radiology and Oncology
Publié: (2008) -
Real-world artificial intelligence-based opportunistic screening for diabetic retinopathy in endocrinology and indigenous healthcare settings in Australia
par: Jane Scheetz, et autres
Publié: (2021) -
Editorial: Progress and Prospects on Skin Imaging Technology, Teledermatology and Artificial Intelligence in Dermatology
par: Chengxu Li, et autres
Publié: (2021) -
Radiology reporting in oncology—oncologists’ perspective
par: Elisabeta Valeria Spînu-Popa, et autres
Publié: (2021)