The mechanism of landslide-induced debris flow in geothermal area, Bukit Barisan mountains of Sumatra, Indonesia

Landslides frequently occur in Indonesia, especially in the geothermal areas located on Sumatra's mountainous island. On April 28, 2016, around 04:30 Western Indonesia Time, a landslide-induced debris flow occurred in Lebong District, Bengkulu Province, Indonesia. The source area of the landsli...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wilopo Wahyu, Fathani Teuku Faisal
Formato: article
Lenguaje:EN
Publicado: Institut za istrazivanja i projektovanja u privredi 2021
Materias:
T
Acceso en línea:https://doaj.org/article/c0ea7e0683634509be26bc0592dd8702
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c0ea7e0683634509be26bc0592dd8702
record_format dspace
spelling oai:doaj.org-article:c0ea7e0683634509be26bc0592dd87022021-12-05T21:23:13ZThe mechanism of landslide-induced debris flow in geothermal area, Bukit Barisan mountains of Sumatra, Indonesia1451-41171821-319710.5937/jaes0-29741https://doaj.org/article/c0ea7e0683634509be26bc0592dd87022021-01-01T00:00:00Zhttps://scindeks-clanci.ceon.rs/data/pdf/1451-4117/2021/1451-41172103688W.pdfhttps://doaj.org/toc/1451-4117https://doaj.org/toc/1821-3197Landslides frequently occur in Indonesia, especially in the geothermal areas located on Sumatra's mountainous island. On April 28, 2016, around 04:30 Western Indonesia Time, a landslide-induced debris flow occurred in Lebong District, Bengkulu Province, Indonesia. The source area of the landslide was located at Beriti Hill on the Bukit Barisan Mountain Range. It resulted in 6 fatalities and damage to infrastructures such as geothermal facilities, roads, water pipes, houses, and bridges. Subsequent landslides and debris flows occurred on April 30, May 2, and 3, 2016. Therefore, this study aims to examine the mechanism and to know the most significant contributing factor to the Beriti Hill landslide. Field investigation, soil sampling, XRD analysis, and Lidar analysis were carried out in the research. Beriti Hill is a geothermal area with many manifestations and is composed of volcanic rocks. Alteration processes produced a thick layer of soil from volcanic rocks. The thick soil dominated by clay minerals and steep slopes is the dominant controlling factor of a landslide, triggered by high rainfall intensity. Increasing water saturation in the landslide material due to high rainfall is the most contributing factor to the developing debris flow from the landslide. Debris flows are recurring events based on the Air Kotok river's stratigraphic data downstream of the landslide area. The debris flow material is toxic due to the low pH from the geothermal process. Therefore, the alluvial fan deposit area from Beriti Hill debris flow is a hazard zone and unsuitable for settlement and agriculture. This research shows that a landslide mechanism in a geothermal area was controlled by clay mineral presence due to the alteration process. The future of landslide risk assessment in the geothermal area can be considered by detailing clay type and their characteristic that significantly contributes to debris flow.Wilopo WahyuFathani Teuku FaisalInstitut za istrazivanja i projektovanja u privrediarticlelandslidesgeothermalalterationrainfallTechnologyTEngineering (General). Civil engineering (General)TA1-2040ENIstrazivanja i projektovanja za privredu, Vol 19, Iss 3, Pp 688-697 (2021)
institution DOAJ
collection DOAJ
language EN
topic landslides
geothermal
alteration
rainfall
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
spellingShingle landslides
geothermal
alteration
rainfall
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Wilopo Wahyu
Fathani Teuku Faisal
The mechanism of landslide-induced debris flow in geothermal area, Bukit Barisan mountains of Sumatra, Indonesia
description Landslides frequently occur in Indonesia, especially in the geothermal areas located on Sumatra's mountainous island. On April 28, 2016, around 04:30 Western Indonesia Time, a landslide-induced debris flow occurred in Lebong District, Bengkulu Province, Indonesia. The source area of the landslide was located at Beriti Hill on the Bukit Barisan Mountain Range. It resulted in 6 fatalities and damage to infrastructures such as geothermal facilities, roads, water pipes, houses, and bridges. Subsequent landslides and debris flows occurred on April 30, May 2, and 3, 2016. Therefore, this study aims to examine the mechanism and to know the most significant contributing factor to the Beriti Hill landslide. Field investigation, soil sampling, XRD analysis, and Lidar analysis were carried out in the research. Beriti Hill is a geothermal area with many manifestations and is composed of volcanic rocks. Alteration processes produced a thick layer of soil from volcanic rocks. The thick soil dominated by clay minerals and steep slopes is the dominant controlling factor of a landslide, triggered by high rainfall intensity. Increasing water saturation in the landslide material due to high rainfall is the most contributing factor to the developing debris flow from the landslide. Debris flows are recurring events based on the Air Kotok river's stratigraphic data downstream of the landslide area. The debris flow material is toxic due to the low pH from the geothermal process. Therefore, the alluvial fan deposit area from Beriti Hill debris flow is a hazard zone and unsuitable for settlement and agriculture. This research shows that a landslide mechanism in a geothermal area was controlled by clay mineral presence due to the alteration process. The future of landslide risk assessment in the geothermal area can be considered by detailing clay type and their characteristic that significantly contributes to debris flow.
format article
author Wilopo Wahyu
Fathani Teuku Faisal
author_facet Wilopo Wahyu
Fathani Teuku Faisal
author_sort Wilopo Wahyu
title The mechanism of landslide-induced debris flow in geothermal area, Bukit Barisan mountains of Sumatra, Indonesia
title_short The mechanism of landslide-induced debris flow in geothermal area, Bukit Barisan mountains of Sumatra, Indonesia
title_full The mechanism of landslide-induced debris flow in geothermal area, Bukit Barisan mountains of Sumatra, Indonesia
title_fullStr The mechanism of landslide-induced debris flow in geothermal area, Bukit Barisan mountains of Sumatra, Indonesia
title_full_unstemmed The mechanism of landslide-induced debris flow in geothermal area, Bukit Barisan mountains of Sumatra, Indonesia
title_sort mechanism of landslide-induced debris flow in geothermal area, bukit barisan mountains of sumatra, indonesia
publisher Institut za istrazivanja i projektovanja u privredi
publishDate 2021
url https://doaj.org/article/c0ea7e0683634509be26bc0592dd8702
work_keys_str_mv AT wilopowahyu themechanismoflandslideinduceddebrisflowingeothermalareabukitbarisanmountainsofsumatraindonesia
AT fathaniteukufaisal themechanismoflandslideinduceddebrisflowingeothermalareabukitbarisanmountainsofsumatraindonesia
AT wilopowahyu mechanismoflandslideinduceddebrisflowingeothermalareabukitbarisanmountainsofsumatraindonesia
AT fathaniteukufaisal mechanismoflandslideinduceddebrisflowingeothermalareabukitbarisanmountainsofsumatraindonesia
_version_ 1718371028393000960