Reproducibility of CT-based radiomic features against image resampling and perturbations for tumour and healthy kidney in renal cancer patients
Abstract Computed Tomography (CT) is widely used in oncology for morphological evaluation and diagnosis, commonly through visual assessments, often exploiting semi-automatic tools as well. Well-established automatic methods for quantitative imaging offer the opportunity to enrich the radiologist int...
Guardado en:
Autores principales: | Margherita Mottola, Stephan Ursprung, Leonardo Rundo, Lorena Escudero Sanchez, Tobias Klatte, Iosif Mendichovszky, Grant D Stewart, Evis Sala, Alessandro Bevilacqua |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c0efd4e12f234fa7abb5a8e2518d129a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Robustness of radiomic features in CT images with different slice thickness, comparing liver tumour and muscle
por: Lorena Escudero Sanchez, et al.
Publicado: (2021) -
MRI-derived radiomics model for baseline prediction of prostate cancer progression on active surveillance
por: Nikita Sushentsev, et al.
Publicado: (2021) -
Author Correction: Radiomics feature reproducibility under inter-rater variability in segmentations of CT images
por: Christoph Haarburger, et al.
Publicado: (2021) -
Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features
por: Erick Costa de Farias, et al.
Publicado: (2021) -
Reproducibility and Repeatability of CBCT-Derived Radiomics Features
por: Hao Wang, et al.
Publicado: (2021)