Entanglement between Identical Particles Is a Useful and Consistent Resource
The existence of fundamentally identical particles represents a foundational distinction between classical and quantum mechanics. Because of their exchange symmetry, identical particles can appear to be entangled—another uniquely quantum phenomenon with far-reaching practical implications. However,...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c0f938d1b8454498a2d447d3ac0a2d3b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c0f938d1b8454498a2d447d3ac0a2d3b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c0f938d1b8454498a2d447d3ac0a2d3b2021-12-02T11:10:50ZEntanglement between Identical Particles Is a Useful and Consistent Resource10.1103/PhysRevX.10.0410122160-3308https://doaj.org/article/c0f938d1b8454498a2d447d3ac0a2d3b2020-10-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.10.041012http://doi.org/10.1103/PhysRevX.10.041012https://doaj.org/toc/2160-3308The existence of fundamentally identical particles represents a foundational distinction between classical and quantum mechanics. Because of their exchange symmetry, identical particles can appear to be entangled—another uniquely quantum phenomenon with far-reaching practical implications. However, a long-standing debate has questioned whether identical particle entanglement is physical or merely a mathematical artifact. In this work, we provide such particle entanglement with a consistent theoretical description as a quantum resource in processes frequently encountered in optical and cold atomic systems. This leads to a plethora of applications of immediate practical impact. On the one hand, we show that the metrological advantage for estimating phase shifts in systems of identical bosons amounts to a measure of their particle entanglement, with a clear-cut operational meaning. On the other hand, we demonstrate in general terms that particle entanglement is the property resulting in directly usable mode entanglement when distributed to separated parties, with particle conservation laws in play. Application of our tools to an experimental implementation with Bose-Einstein condensates leads to the first quantitative estimation of identical particle entanglement. Further connections are revealed between particle entanglement and other resources such as optical nonclassicality and quantum coherence. Overall, this work marks a resolutive step in the ongoing debate by delivering a unifying conceptual and practical understanding of entanglement between identical particles.Benjamin MorrisBenjamin YadinMatteo FadelTilman ZiboldPhilipp TreutleinGerardo AdessoAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 10, Iss 4, p 041012 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 |
spellingShingle |
Physics QC1-999 Benjamin Morris Benjamin Yadin Matteo Fadel Tilman Zibold Philipp Treutlein Gerardo Adesso Entanglement between Identical Particles Is a Useful and Consistent Resource |
description |
The existence of fundamentally identical particles represents a foundational distinction between classical and quantum mechanics. Because of their exchange symmetry, identical particles can appear to be entangled—another uniquely quantum phenomenon with far-reaching practical implications. However, a long-standing debate has questioned whether identical particle entanglement is physical or merely a mathematical artifact. In this work, we provide such particle entanglement with a consistent theoretical description as a quantum resource in processes frequently encountered in optical and cold atomic systems. This leads to a plethora of applications of immediate practical impact. On the one hand, we show that the metrological advantage for estimating phase shifts in systems of identical bosons amounts to a measure of their particle entanglement, with a clear-cut operational meaning. On the other hand, we demonstrate in general terms that particle entanglement is the property resulting in directly usable mode entanglement when distributed to separated parties, with particle conservation laws in play. Application of our tools to an experimental implementation with Bose-Einstein condensates leads to the first quantitative estimation of identical particle entanglement. Further connections are revealed between particle entanglement and other resources such as optical nonclassicality and quantum coherence. Overall, this work marks a resolutive step in the ongoing debate by delivering a unifying conceptual and practical understanding of entanglement between identical particles. |
format |
article |
author |
Benjamin Morris Benjamin Yadin Matteo Fadel Tilman Zibold Philipp Treutlein Gerardo Adesso |
author_facet |
Benjamin Morris Benjamin Yadin Matteo Fadel Tilman Zibold Philipp Treutlein Gerardo Adesso |
author_sort |
Benjamin Morris |
title |
Entanglement between Identical Particles Is a Useful and Consistent Resource |
title_short |
Entanglement between Identical Particles Is a Useful and Consistent Resource |
title_full |
Entanglement between Identical Particles Is a Useful and Consistent Resource |
title_fullStr |
Entanglement between Identical Particles Is a Useful and Consistent Resource |
title_full_unstemmed |
Entanglement between Identical Particles Is a Useful and Consistent Resource |
title_sort |
entanglement between identical particles is a useful and consistent resource |
publisher |
American Physical Society |
publishDate |
2020 |
url |
https://doaj.org/article/c0f938d1b8454498a2d447d3ac0a2d3b |
work_keys_str_mv |
AT benjaminmorris entanglementbetweenidenticalparticlesisausefulandconsistentresource AT benjaminyadin entanglementbetweenidenticalparticlesisausefulandconsistentresource AT matteofadel entanglementbetweenidenticalparticlesisausefulandconsistentresource AT tilmanzibold entanglementbetweenidenticalparticlesisausefulandconsistentresource AT philipptreutlein entanglementbetweenidenticalparticlesisausefulandconsistentresource AT gerardoadesso entanglementbetweenidenticalparticlesisausefulandconsistentresource |
_version_ |
1718396188605022208 |