A weighted patient network-based framework for predicting chronic diseases using graph neural networks
Abstract Chronic disease prediction is a critical task in healthcare. Existing studies fulfil this requirement by employing machine learning techniques based on patient features, but they suffer from high dimensional data problems and a high level of bias. We propose a framework for predicting chron...
Guardado en:
Autores principales: | Haohui Lu, Shahadat Uddin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c10890ff33224ca0be3b1354b803e761 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A graph neural network framework for causal inference in brain networks
por: S. Wein, et al.
Publicado: (2021) -
An Overview on the Application of Graph Neural Networks in Wireless Networks
por: Shiwen He, et al.
Publicado: (2021) -
CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network
por: Zhihao Ma, et al.
Publicado: (2021) -
Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network
por: Jiarui Chen, et al.
Publicado: (2021) -
Deep graph neural network-based prediction of acute suicidal ideation in young adults
por: Kyu Sung Choi, et al.
Publicado: (2021)