A New Bearing Fault Diagnosis Method Based on Capsule Network and Markov Transition Field/Gramian Angular Field
Compared to time-consuming and unreliable manual analysis, intelligent fault diagnosis techniques using deep learning models can improve the accuracy of intelligent fault diagnosis with their multi-layer nonlinear mapping capabilities. This paper proposes a model to perform fault diagnosis and class...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c109bc54af76403fa12886d990ca753b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c109bc54af76403fa12886d990ca753b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c109bc54af76403fa12886d990ca753b2021-11-25T18:59:07ZA New Bearing Fault Diagnosis Method Based on Capsule Network and Markov Transition Field/Gramian Angular Field10.3390/s212277621424-8220https://doaj.org/article/c109bc54af76403fa12886d990ca753b2021-11-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/22/7762https://doaj.org/toc/1424-8220Compared to time-consuming and unreliable manual analysis, intelligent fault diagnosis techniques using deep learning models can improve the accuracy of intelligent fault diagnosis with their multi-layer nonlinear mapping capabilities. This paper proposes a model to perform fault diagnosis and classification by using a time series of vibration sensor data as the input. The model encodes the raw vibration signal into a two-dimensional image and performs feature extraction and classification by a deep convolutional neural network or improved capsule network. A fault diagnosis technique based on the Gramian Angular Field (GAF), the Markov Transition Field (MTF), and the Capsule Network is proposed. Experiments conducted on a bearing failure dataset from Case Western Reserve University investigated the impact of two coding methods and different network structures on the diagnosis accuracy. The results show that the GAF technique retains more complete fault characteristics, while the MTF technique contains a small number of fault characteristics but more dynamic characteristics. Therefore, the proposed method incorporates GAF images and MTF images as a dual-channel image input to the capsule network, enabling the network to obtain a more complete fault signature. Multiple sets of experiments were conducted on the bearing fault dataset at Case Western Reserve University, and the Capsule Network in the proposed model has an advantage over other convolutional neural networks and performs well in the comparison of fault diagnosis methods proposed by other researchers.Bin HanHui ZhangMing SunFengtong WuMDPI AGarticleintelligent fault diagnosistime series classificationconvolutional neural networksChemical technologyTP1-1185ENSensors, Vol 21, Iss 7762, p 7762 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
intelligent fault diagnosis time series classification convolutional neural networks Chemical technology TP1-1185 |
spellingShingle |
intelligent fault diagnosis time series classification convolutional neural networks Chemical technology TP1-1185 Bin Han Hui Zhang Ming Sun Fengtong Wu A New Bearing Fault Diagnosis Method Based on Capsule Network and Markov Transition Field/Gramian Angular Field |
description |
Compared to time-consuming and unreliable manual analysis, intelligent fault diagnosis techniques using deep learning models can improve the accuracy of intelligent fault diagnosis with their multi-layer nonlinear mapping capabilities. This paper proposes a model to perform fault diagnosis and classification by using a time series of vibration sensor data as the input. The model encodes the raw vibration signal into a two-dimensional image and performs feature extraction and classification by a deep convolutional neural network or improved capsule network. A fault diagnosis technique based on the Gramian Angular Field (GAF), the Markov Transition Field (MTF), and the Capsule Network is proposed. Experiments conducted on a bearing failure dataset from Case Western Reserve University investigated the impact of two coding methods and different network structures on the diagnosis accuracy. The results show that the GAF technique retains more complete fault characteristics, while the MTF technique contains a small number of fault characteristics but more dynamic characteristics. Therefore, the proposed method incorporates GAF images and MTF images as a dual-channel image input to the capsule network, enabling the network to obtain a more complete fault signature. Multiple sets of experiments were conducted on the bearing fault dataset at Case Western Reserve University, and the Capsule Network in the proposed model has an advantage over other convolutional neural networks and performs well in the comparison of fault diagnosis methods proposed by other researchers. |
format |
article |
author |
Bin Han Hui Zhang Ming Sun Fengtong Wu |
author_facet |
Bin Han Hui Zhang Ming Sun Fengtong Wu |
author_sort |
Bin Han |
title |
A New Bearing Fault Diagnosis Method Based on Capsule Network and Markov Transition Field/Gramian Angular Field |
title_short |
A New Bearing Fault Diagnosis Method Based on Capsule Network and Markov Transition Field/Gramian Angular Field |
title_full |
A New Bearing Fault Diagnosis Method Based on Capsule Network and Markov Transition Field/Gramian Angular Field |
title_fullStr |
A New Bearing Fault Diagnosis Method Based on Capsule Network and Markov Transition Field/Gramian Angular Field |
title_full_unstemmed |
A New Bearing Fault Diagnosis Method Based on Capsule Network and Markov Transition Field/Gramian Angular Field |
title_sort |
new bearing fault diagnosis method based on capsule network and markov transition field/gramian angular field |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/c109bc54af76403fa12886d990ca753b |
work_keys_str_mv |
AT binhan anewbearingfaultdiagnosismethodbasedoncapsulenetworkandmarkovtransitionfieldgramianangularfield AT huizhang anewbearingfaultdiagnosismethodbasedoncapsulenetworkandmarkovtransitionfieldgramianangularfield AT mingsun anewbearingfaultdiagnosismethodbasedoncapsulenetworkandmarkovtransitionfieldgramianangularfield AT fengtongwu anewbearingfaultdiagnosismethodbasedoncapsulenetworkandmarkovtransitionfieldgramianangularfield AT binhan newbearingfaultdiagnosismethodbasedoncapsulenetworkandmarkovtransitionfieldgramianangularfield AT huizhang newbearingfaultdiagnosismethodbasedoncapsulenetworkandmarkovtransitionfieldgramianangularfield AT mingsun newbearingfaultdiagnosismethodbasedoncapsulenetworkandmarkovtransitionfieldgramianangularfield AT fengtongwu newbearingfaultdiagnosismethodbasedoncapsulenetworkandmarkovtransitionfieldgramianangularfield |
_version_ |
1718410487586095104 |