A New Bearing Fault Diagnosis Method Based on Capsule Network and Markov Transition Field/Gramian Angular Field
Compared to time-consuming and unreliable manual analysis, intelligent fault diagnosis techniques using deep learning models can improve the accuracy of intelligent fault diagnosis with their multi-layer nonlinear mapping capabilities. This paper proposes a model to perform fault diagnosis and class...
Enregistré dans:
Auteurs principaux: | Bin Han, Hui Zhang, Ming Sun, Fengtong Wu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c109bc54af76403fa12886d990ca753b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Intelligent Fault Diagnosis and Forecast of Time-Varying Bearing Based on Deep Learning VMD-DenseNet
par: Shih-Lin Lin
Publié: (2021) -
Bearing Fault Diagnosis via Improved One-Dimensional Multi-Scale Dilated CNN
par: Jiajun He, et autres
Publié: (2021) -
Fault Diagnosis of Electric Motors Using Deep Learning Algorithms and Its Application: A Review
par: Yuanyuan Yang, et autres
Publié: (2021) -
Intelligent Fault Diagnosis Method of Wind Turbines Planetary Gearboxes Based on a Multi-Scale Dense Fusion Network
par: Xinghua Huang, et autres
Publié: (2021) -
Towards the Integration of Reliability and Security Mechanisms to Enhance the Fault Resilience of Neural Networks
par: Nikolaos Ioannis Deligiannis, et autres
Publié: (2021)