Hypergraph reconstruction from network data

Higher-order interactions intervene in a large variety of networked phenomena, from shared interests known to influence the creation of social ties, to co-location shaping networks embedded in space, like power grids. This work introduces a Bayesian framework to infer higher-order interactions hidde...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jean-Gabriel Young, Giovanni Petri, Tiago P. Peixoto
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/c1160a8ebacd4688866a4ca02fb478c4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Higher-order interactions intervene in a large variety of networked phenomena, from shared interests known to influence the creation of social ties, to co-location shaping networks embedded in space, like power grids. This work introduces a Bayesian framework to infer higher-order interactions hidden in network data.