Hypergraph reconstruction from network data

Higher-order interactions intervene in a large variety of networked phenomena, from shared interests known to influence the creation of social ties, to co-location shaping networks embedded in space, like power grids. This work introduces a Bayesian framework to infer higher-order interactions hidde...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jean-Gabriel Young, Giovanni Petri, Tiago P. Peixoto
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/c1160a8ebacd4688866a4ca02fb478c4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c1160a8ebacd4688866a4ca02fb478c4
record_format dspace
spelling oai:doaj.org-article:c1160a8ebacd4688866a4ca02fb478c42021-12-02T17:23:25ZHypergraph reconstruction from network data10.1038/s42005-021-00637-w2399-3650https://doaj.org/article/c1160a8ebacd4688866a4ca02fb478c42021-06-01T00:00:00Zhttps://doi.org/10.1038/s42005-021-00637-whttps://doaj.org/toc/2399-3650Higher-order interactions intervene in a large variety of networked phenomena, from shared interests known to influence the creation of social ties, to co-location shaping networks embedded in space, like power grids. This work introduces a Bayesian framework to infer higher-order interactions hidden in network data.Jean-Gabriel YoungGiovanni PetriTiago P. PeixotoNature PortfolioarticleAstrophysicsQB460-466PhysicsQC1-999ENCommunications Physics, Vol 4, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Astrophysics
QB460-466
Physics
QC1-999
spellingShingle Astrophysics
QB460-466
Physics
QC1-999
Jean-Gabriel Young
Giovanni Petri
Tiago P. Peixoto
Hypergraph reconstruction from network data
description Higher-order interactions intervene in a large variety of networked phenomena, from shared interests known to influence the creation of social ties, to co-location shaping networks embedded in space, like power grids. This work introduces a Bayesian framework to infer higher-order interactions hidden in network data.
format article
author Jean-Gabriel Young
Giovanni Petri
Tiago P. Peixoto
author_facet Jean-Gabriel Young
Giovanni Petri
Tiago P. Peixoto
author_sort Jean-Gabriel Young
title Hypergraph reconstruction from network data
title_short Hypergraph reconstruction from network data
title_full Hypergraph reconstruction from network data
title_fullStr Hypergraph reconstruction from network data
title_full_unstemmed Hypergraph reconstruction from network data
title_sort hypergraph reconstruction from network data
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/c1160a8ebacd4688866a4ca02fb478c4
work_keys_str_mv AT jeangabrielyoung hypergraphreconstructionfromnetworkdata
AT giovannipetri hypergraphreconstructionfromnetworkdata
AT tiagoppeixoto hypergraphreconstructionfromnetworkdata
_version_ 1718380993259241472