Hypergraph reconstruction from network data
Higher-order interactions intervene in a large variety of networked phenomena, from shared interests known to influence the creation of social ties, to co-location shaping networks embedded in space, like power grids. This work introduces a Bayesian framework to infer higher-order interactions hidde...
Guardado en:
Autores principales: | Jean-Gabriel Young, Giovanni Petri, Tiago P. Peixoto |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c1160a8ebacd4688866a4ca02fb478c4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Phase transitions and stability of dynamical processes on hypergraphs
por: Guilherme Ferraz de Arruda, et al.
Publicado: (2021) -
Node and edge nonlinear eigenvector centrality for hypergraphs
por: Francesco Tudisco, et al.
Publicado: (2021) -
How choosing random-walk model and network representation matters for flow-based community detection in hypergraphs
por: Anton Eriksson, et al.
Publicado: (2021) -
Detecting informative higher-order interactions in statistically validated hypergraphs
por: Federico Musciotto, et al.
Publicado: (2021) -
Publisher Correction: Node and edge nonlinear eigenvector centrality for hypergraphs
por: Francesco Tudisco, et al.
Publicado: (2021)