On Determining the Critical Velocity in the Shot Sleeve of a High-Pressure Die Casting Machine Using Open Source CFD

This paper investigates the critical plunger velocity in high-pressure die casting during the slow phase of the piston motion and how it can be determined with computational fluid dynamics (CFD) in open source software. The melt-air system is modelled via an Eulerian volume-of-fluid approach, treati...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sebastian Kohlstädt, Michael Vynnycky, Stephan Goeke, Andreas Gebauer-Teichmann
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/c1195a35737d4d3285fdc95763e02305
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c1195a35737d4d3285fdc95763e02305
record_format dspace
spelling oai:doaj.org-article:c1195a35737d4d3285fdc95763e023052021-11-25T17:31:32ZOn Determining the Critical Velocity in the Shot Sleeve of a High-Pressure Die Casting Machine Using Open Source CFD10.3390/fluids61103862311-5521https://doaj.org/article/c1195a35737d4d3285fdc95763e023052021-10-01T00:00:00Zhttps://www.mdpi.com/2311-5521/6/11/386https://doaj.org/toc/2311-5521This paper investigates the critical plunger velocity in high-pressure die casting during the slow phase of the piston motion and how it can be determined with computational fluid dynamics (CFD) in open source software. The melt-air system is modelled via an Eulerian volume-of-fluid approach, treating the air as a compressible perfect gas. The turbulence is treated via a Reynolds-averaged Navier Stokes (RANS) approach that uses the Menter SST <i>k</i>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula> model. Two different strategies for mesh motion are presented and compared against each other. The solver is validated via analytical models and empirical data. A method is then presented to determine the optimal velocity using a two-dimensional (2D) mesh. As a second step, it is then discussed how the results are in line with those obtained for an actual, industrially relevant, three-dimensional (3D) geometry that also includes the ingate system of the die.Sebastian KohlstädtMichael VynnyckyStephan GoekeAndreas Gebauer-TeichmannMDPI AGarticlecompressible two-phase flowhigh-pressure die castingshot sleevecritical velocityOpenFOAMThermodynamicsQC310.15-319Descriptive and experimental mechanicsQC120-168.85ENFluids, Vol 6, Iss 386, p 386 (2021)
institution DOAJ
collection DOAJ
language EN
topic compressible two-phase flow
high-pressure die casting
shot sleeve
critical velocity
OpenFOAM
Thermodynamics
QC310.15-319
Descriptive and experimental mechanics
QC120-168.85
spellingShingle compressible two-phase flow
high-pressure die casting
shot sleeve
critical velocity
OpenFOAM
Thermodynamics
QC310.15-319
Descriptive and experimental mechanics
QC120-168.85
Sebastian Kohlstädt
Michael Vynnycky
Stephan Goeke
Andreas Gebauer-Teichmann
On Determining the Critical Velocity in the Shot Sleeve of a High-Pressure Die Casting Machine Using Open Source CFD
description This paper investigates the critical plunger velocity in high-pressure die casting during the slow phase of the piston motion and how it can be determined with computational fluid dynamics (CFD) in open source software. The melt-air system is modelled via an Eulerian volume-of-fluid approach, treating the air as a compressible perfect gas. The turbulence is treated via a Reynolds-averaged Navier Stokes (RANS) approach that uses the Menter SST <i>k</i>-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula> model. Two different strategies for mesh motion are presented and compared against each other. The solver is validated via analytical models and empirical data. A method is then presented to determine the optimal velocity using a two-dimensional (2D) mesh. As a second step, it is then discussed how the results are in line with those obtained for an actual, industrially relevant, three-dimensional (3D) geometry that also includes the ingate system of the die.
format article
author Sebastian Kohlstädt
Michael Vynnycky
Stephan Goeke
Andreas Gebauer-Teichmann
author_facet Sebastian Kohlstädt
Michael Vynnycky
Stephan Goeke
Andreas Gebauer-Teichmann
author_sort Sebastian Kohlstädt
title On Determining the Critical Velocity in the Shot Sleeve of a High-Pressure Die Casting Machine Using Open Source CFD
title_short On Determining the Critical Velocity in the Shot Sleeve of a High-Pressure Die Casting Machine Using Open Source CFD
title_full On Determining the Critical Velocity in the Shot Sleeve of a High-Pressure Die Casting Machine Using Open Source CFD
title_fullStr On Determining the Critical Velocity in the Shot Sleeve of a High-Pressure Die Casting Machine Using Open Source CFD
title_full_unstemmed On Determining the Critical Velocity in the Shot Sleeve of a High-Pressure Die Casting Machine Using Open Source CFD
title_sort on determining the critical velocity in the shot sleeve of a high-pressure die casting machine using open source cfd
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/c1195a35737d4d3285fdc95763e02305
work_keys_str_mv AT sebastiankohlstadt ondeterminingthecriticalvelocityintheshotsleeveofahighpressurediecastingmachineusingopensourcecfd
AT michaelvynnycky ondeterminingthecriticalvelocityintheshotsleeveofahighpressurediecastingmachineusingopensourcecfd
AT stephangoeke ondeterminingthecriticalvelocityintheshotsleeveofahighpressurediecastingmachineusingopensourcecfd
AT andreasgebauerteichmann ondeterminingthecriticalvelocityintheshotsleeveofahighpressurediecastingmachineusingopensourcecfd
_version_ 1718412250883031040