Multisensor Land Cover Classification With Sparsely Annotated Data Based on Convolutional Neural Networks and Self-Distillation
Extensive research studies have been conducted in recent years to exploit the complementarity among multisensor (or multimodal) remote sensing data for prominent applications such as land cover mapping. In order to make a step further with respect to previous studies, which investigate multitemporal...
Enregistré dans:
Auteurs principaux: | Yawogan Jean Eudes Gbodjo, Olivier Montet, Dino Ienco, Raffaele Gaetano, Stephane Dupuy |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c122c482e24f42d599480cb0c63d64e6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Ensemble Encoder–Decoder Models for Predicting Land Transformation
par: Pariya Pourmohammadi, et autres
Publié: (2021) -
Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
par: Lulu Wan, et autres
Publié: (2021) -
Systematic transitions in land use and land cover in a pre-Andean subwatershed with high human intervention in the Araucania Region, Chile
par: Saavedra Briones,Pablo, et autres
Publié: (2016) -
A Framework to Calculate Annual Landscape Ecological Risk Index Based on Land Use/Land Cover Changes: A Case Study on Shengjin Lake Wetland
par: Penghai Wu, et autres
Publié: (2021) -
Predicting the Impact of Future Land Use and Climate Change on Potential Soil Erosion Risk in an Urban District of the Harare Metropolitan Province, Zimbabwe
par: Andrew K. Marondedze, et autres
Publié: (2021)