FaceVAE: Generation of a 3D Geometric Object Using Variational Autoencoders
Deep learning for 3D data has become a popular research theme in many fields. However, most of the research on 3D data is based on voxels, 2D images, and point clouds. At actual industrial sites, face-based geometry data are being used, but their direct application to industrial sites remains limite...
Guardado en:
Autores principales: | Sungsoo Park, Hyeoncheol Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c12fe31ef7e1468087945302a3b6ee0e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Optimal design of microwave absorber using novel variational autoencoder from a latent space search strategy
por: Han-Ik On, et al.
Publicado: (2021) -
A Novel Hybrid Method for KPI Anomaly Detection Based on VAE and SVDD
por: Yun Zhao, et al.
Publicado: (2021) -
3DPlanNet: Generating 3D Models from 2D Floor Plan Images Using Ensemble Methods
por: Sungsoo Park, et al.
Publicado: (2021) -
Possibility of Power Electronics-Based Control Analysis of a Self-Excited Induction Generator (SEIG) for Wind Turbine and Electrolyzer Application
por: Woonki Na, et al.
Publicado: (2021) -
Uncertainty Costs Optimization of Residential Solar Generators Considering Intraday Markets
por: Julian Garcia-Guarin, et al.
Publicado: (2021)