Toward Autonomous Antibiotic Discovery

ABSTRACT Machines hold the potential to replace humans in many societal endeavors, and drug discovery is no exception. Antibiotic innovation has been stalled for decades, which has coincided with an alarming increase in multidrug-resistant bacteria. Since the beginning of the antibiotic era, the nat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cesar de la Fuente-Nunez
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://doaj.org/article/c133d1e9befd4f2a903351f1aa649a05
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:ABSTRACT Machines hold the potential to replace humans in many societal endeavors, and drug discovery is no exception. Antibiotic innovation has been stalled for decades, which has coincided with an alarming increase in multidrug-resistant bacteria. Since the beginning of the antibiotic era, the natural world has been our greatest innovator, giving rise to nearly all antibiotics available today. As mere observers of the vast molecular diversity produced by Earth’s organisms, we have perfected the art of isolating novel chemistries with life-saving antimicrobial properties. However, today we are at a crossroads, as no new molecular scaffolds have been discovered for decades. We may need to look beyond the natural world into the virtual dimension for solutions and harness present-day computational power to help solve the grand global health challenge of antibiotic resistance. Computer-made drugs may enable the discovery of unprecedented functions in biological systems and help replenish our arsenal of effective antibiotics.