Equation of motion for grain boundaries in polycrystals
Abstract Grain boundary (GB) dynamics are largely controlled by the formation and motion of disconnections (with step and dislocation characters) along with the GB. The dislocation character gives rise to shear coupling; i.e. the relative tangential motion of two grains meeting at the GB during GB m...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c135088083ee453a9336a06747e1d4e8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c135088083ee453a9336a06747e1d4e8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c135088083ee453a9336a06747e1d4e82021-12-02T14:41:55ZEquation of motion for grain boundaries in polycrystals10.1038/s41524-021-00532-62057-3960https://doaj.org/article/c135088083ee453a9336a06747e1d4e82021-05-01T00:00:00Zhttps://doi.org/10.1038/s41524-021-00532-6https://doaj.org/toc/2057-3960Abstract Grain boundary (GB) dynamics are largely controlled by the formation and motion of disconnections (with step and dislocation characters) along with the GB. The dislocation character gives rise to shear coupling; i.e. the relative tangential motion of two grains meeting at the GB during GB migration. In a polycrystal, the shear coupling is constrained by the presence of other grains and GB junctions, which prevents large-scale sliding of one grain relative to the other. We present continuum equations of motion for GBs that is based upon the underlying disconnection dynamics and accounts for this mechanical constraint in polycrystals. This leads to a reduced-order (zero-shear constrained) model for GB motion that is easily implemented in a computationally efficient framework, appropriate for the large-scale simulation of the evolution of polycrystalline microstructures. We validated the proposed reduced-order model with direct comparisons to full multi-disconnection mode simulations.Luchan ZhangJian HanDavid J. SrolovitzYang XiangNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492Computer softwareQA76.75-76.765ENnpj Computational Materials, Vol 7, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 Computer software QA76.75-76.765 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Computer software QA76.75-76.765 Luchan Zhang Jian Han David J. Srolovitz Yang Xiang Equation of motion for grain boundaries in polycrystals |
description |
Abstract Grain boundary (GB) dynamics are largely controlled by the formation and motion of disconnections (with step and dislocation characters) along with the GB. The dislocation character gives rise to shear coupling; i.e. the relative tangential motion of two grains meeting at the GB during GB migration. In a polycrystal, the shear coupling is constrained by the presence of other grains and GB junctions, which prevents large-scale sliding of one grain relative to the other. We present continuum equations of motion for GBs that is based upon the underlying disconnection dynamics and accounts for this mechanical constraint in polycrystals. This leads to a reduced-order (zero-shear constrained) model for GB motion that is easily implemented in a computationally efficient framework, appropriate for the large-scale simulation of the evolution of polycrystalline microstructures. We validated the proposed reduced-order model with direct comparisons to full multi-disconnection mode simulations. |
format |
article |
author |
Luchan Zhang Jian Han David J. Srolovitz Yang Xiang |
author_facet |
Luchan Zhang Jian Han David J. Srolovitz Yang Xiang |
author_sort |
Luchan Zhang |
title |
Equation of motion for grain boundaries in polycrystals |
title_short |
Equation of motion for grain boundaries in polycrystals |
title_full |
Equation of motion for grain boundaries in polycrystals |
title_fullStr |
Equation of motion for grain boundaries in polycrystals |
title_full_unstemmed |
Equation of motion for grain boundaries in polycrystals |
title_sort |
equation of motion for grain boundaries in polycrystals |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/c135088083ee453a9336a06747e1d4e8 |
work_keys_str_mv |
AT luchanzhang equationofmotionforgrainboundariesinpolycrystals AT jianhan equationofmotionforgrainboundariesinpolycrystals AT davidjsrolovitz equationofmotionforgrainboundariesinpolycrystals AT yangxiang equationofmotionforgrainboundariesinpolycrystals |
_version_ |
1718389833532964864 |