A comparative analysis of artificial neural networks and wavelet hybrid approaches to long-term toxic heavy metal prediction
Abstract The occurrence of toxic metals in the aquatic environment is as caused by a variety of contaminations which makes difficulty in the concentration prediction. In this study, conventional methods of back-propagation neural network (BPNN) and nonlinear autoregressive network with exogenous inp...
Guardado en:
Autores principales: | Peifeng Li, Pei Hua, Dongwei Gui, Jie Niu, Peng Pei, Jin Zhang, Peter Krebs |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c140c50e41a94f9eb263590406608f21 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Review On Some Heavy Metals Toxicity On Freshwater Fishes
por: Shahbaa K. AL-Taee, et al.
Publicado: (2020) -
Modelling a rotating biological contactor treating heavy metal contaminated wastewater using artificial neural network
por: M. Gopi Kiran, et al.
Publicado: (2021) -
Heavy metal pollution and risk assessment by the battery of toxicity tests
por: Mohd. Shahnawaz Khan, et al.
Publicado: (2020) -
The effect of heavy metal salt anions on their toxicity to higher aquatic plants
por: Elena G. Krylova
Publicado: (2020) -
Research on improved convolutional wavelet neural network
por: Jingwei Liu, et al.
Publicado: (2021)