New estimates of flood exposure in developing countries using high-resolution population data

Flood risk modelling neglects the location of people and assets. Here the authors applied machine learning techniques and high-resolution population data to reinvestigate the impact of population distributions on flood exposure and showed that populations are generally represented as risk-averse and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andrew Smith, Paul D. Bates, Oliver Wing, Christopher Sampson, Niall Quinn, Jeff Neal
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/c14b36755011474ba2a151bf0248d457
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c14b36755011474ba2a151bf0248d457
record_format dspace
spelling oai:doaj.org-article:c14b36755011474ba2a151bf0248d4572021-12-02T17:31:22ZNew estimates of flood exposure in developing countries using high-resolution population data10.1038/s41467-019-09282-y2041-1723https://doaj.org/article/c14b36755011474ba2a151bf0248d4572019-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-09282-yhttps://doaj.org/toc/2041-1723Flood risk modelling neglects the location of people and assets. Here the authors applied machine learning techniques and high-resolution population data to reinvestigate the impact of population distributions on flood exposure and showed that populations are generally represented as risk-averse and largely avoiding obvious flood zones.Andrew SmithPaul D. BatesOliver WingChristopher SampsonNiall QuinnJeff NealNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-7 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Andrew Smith
Paul D. Bates
Oliver Wing
Christopher Sampson
Niall Quinn
Jeff Neal
New estimates of flood exposure in developing countries using high-resolution population data
description Flood risk modelling neglects the location of people and assets. Here the authors applied machine learning techniques and high-resolution population data to reinvestigate the impact of population distributions on flood exposure and showed that populations are generally represented as risk-averse and largely avoiding obvious flood zones.
format article
author Andrew Smith
Paul D. Bates
Oliver Wing
Christopher Sampson
Niall Quinn
Jeff Neal
author_facet Andrew Smith
Paul D. Bates
Oliver Wing
Christopher Sampson
Niall Quinn
Jeff Neal
author_sort Andrew Smith
title New estimates of flood exposure in developing countries using high-resolution population data
title_short New estimates of flood exposure in developing countries using high-resolution population data
title_full New estimates of flood exposure in developing countries using high-resolution population data
title_fullStr New estimates of flood exposure in developing countries using high-resolution population data
title_full_unstemmed New estimates of flood exposure in developing countries using high-resolution population data
title_sort new estimates of flood exposure in developing countries using high-resolution population data
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/c14b36755011474ba2a151bf0248d457
work_keys_str_mv AT andrewsmith newestimatesoffloodexposureindevelopingcountriesusinghighresolutionpopulationdata
AT pauldbates newestimatesoffloodexposureindevelopingcountriesusinghighresolutionpopulationdata
AT oliverwing newestimatesoffloodexposureindevelopingcountriesusinghighresolutionpopulationdata
AT christophersampson newestimatesoffloodexposureindevelopingcountriesusinghighresolutionpopulationdata
AT niallquinn newestimatesoffloodexposureindevelopingcountriesusinghighresolutionpopulationdata
AT jeffneal newestimatesoffloodexposureindevelopingcountriesusinghighresolutionpopulationdata
_version_ 1718380637168074752