Artificial intelligence-based automatic assessment of lower limb torsion on MRI
Abstract Abnormal torsion of the lower limbs may adversely affect joint health. This study developed and validated a deep learning-based method for automatic measurement of femoral and tibial torsion on MRI. Axial T2-weighted sequences acquired of the hips, knees, and ankles of 93 patients (mean age...
Guardado en:
Autores principales: | Justus Schock, Daniel Truhn, Darius Nürnberger, Stefan Conrad, Marc Sebastian Huppertz, Sebastian Keil, Christiane Kuhl, Dorit Merhof, Sven Nebelung |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c14e2bbef8674f8eba836f6d678546f7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Radiomics feature reproducibility under inter-rater variability in segmentations of CT images
por: Christoph Haarburger, et al.
Publicado: (2021) -
The MRI posterior drawer test to assess posterior cruciate ligament functionality and knee joint laxity
por: Lena Marie Wollschläger, et al.
Publicado: (2021) -
Impact of intelligent phacoemulsification software on torsional phacoemulsification surgery
por: Canturk Ugurbas S, et al.
Publicado: (2012) -
A novel combined level set model for automatic MR image segmentation
por: Li Jianzhang, et al.
Publicado: (2020) -
Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization
por: Tianyu Han, et al.
Publicado: (2021)