Artificial intelligence-based automatic assessment of lower limb torsion on MRI
Abstract Abnormal torsion of the lower limbs may adversely affect joint health. This study developed and validated a deep learning-based method for automatic measurement of femoral and tibial torsion on MRI. Axial T2-weighted sequences acquired of the hips, knees, and ankles of 93 patients (mean age...
Enregistré dans:
Auteurs principaux: | Justus Schock, Daniel Truhn, Darius Nürnberger, Stefan Conrad, Marc Sebastian Huppertz, Sebastian Keil, Christiane Kuhl, Dorit Merhof, Sven Nebelung |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c14e2bbef8674f8eba836f6d678546f7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Author Correction: Radiomics feature reproducibility under inter-rater variability in segmentations of CT images
par: Christoph Haarburger, et autres
Publié: (2021) -
The MRI posterior drawer test to assess posterior cruciate ligament functionality and knee joint laxity
par: Lena Marie Wollschläger, et autres
Publié: (2021) -
Impact of intelligent phacoemulsification software on torsional phacoemulsification surgery
par: Canturk Ugurbas S, et autres
Publié: (2012) -
A novel combined level set model for automatic MR image segmentation
par: Li Jianzhang, et autres
Publié: (2020) -
Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization
par: Tianyu Han, et autres
Publié: (2021)