Noise-induced barren plateaus in variational quantum algorithms
Variational quantum algorithms (VQAs) are a leading candidate for useful applications of near-term quantum computing, but limitations due to unavoidable noise have not been clearly characterized. Here, the authors prove that local Pauli noise can cause vanishing gradients rendering VQAs untrainable.
Guardado en:
Autores principales: | Samson Wang, Enrico Fontana, M. Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, Patrick J. Coles |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c15b72f4af3a4a639de26b2579d36812 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Cost function dependent barren plateaus in shallow parametrized quantum circuits
por: M. Cerezo, et al.
Publicado: (2021) -
Barren plateaus in quantum neural network training landscapes
por: Jarrod R. McClean, et al.
Publicado: (2018) -
Variational consistent histories as a hybrid algorithm for quantum foundations
por: Andrew Arrasmith, et al.
Publicado: (2019) -
Error mitigation with Clifford quantum-circuit data
por: Piotr Czarnik, et al.
Publicado: (2021) -
Plateaus, rebounds and the effects of individual behaviours in epidemics
por: Henri Berestycki, et al.
Publicado: (2021)