SciBet as a portable and fast single cell type identifier
The increasing size of single cell sequencing data sets calls for scalable cell annotation methods. Here, the authors introduce SciBet, which uses a multinomial distribution model and maximum likelihood estimation for fast and accurate single cell identification.
Guardado en:
| Autores principales: | , , , , , , , |
|---|---|
| Formato: | article |
| Lenguaje: | EN |
| Publicado: |
Nature Portfolio
2020
|
| Materias: | |
| Acceso en línea: | https://doaj.org/article/c160ac1e1a1e4a25b0baef251f5258dd |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Sumario: | The increasing size of single cell sequencing data sets calls for scalable cell annotation methods. Here, the authors introduce SciBet, which uses a multinomial distribution model and maximum likelihood estimation for fast and accurate single cell identification. |
|---|