Micropatterned nanolayers immobilized with nerve growth factor for neurite formation of PC12 cells

Seong Min Kim,1,2 Masashi Ueki,1 Xueli Ren,3 Jun Akimoto,1 Yasuyuki Sakai,2 Yoshihiro Ito1,3 1Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; 2Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kim SM, Ueki M, Ren X, Akimoto J, Sakai Y, Ito Y
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2019
Materias:
Acceso en línea:https://doaj.org/article/c1658d02b9684b00bd14fcdc3e9592a1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c1658d02b9684b00bd14fcdc3e9592a1
record_format dspace
spelling oai:doaj.org-article:c1658d02b9684b00bd14fcdc3e9592a12021-12-02T04:09:02ZMicropatterned nanolayers immobilized with nerve growth factor for neurite formation of PC12 cells1178-2013https://doaj.org/article/c1658d02b9684b00bd14fcdc3e9592a12019-09-01T00:00:00Zhttps://www.dovepress.com/micropatterned-nanolayers-immobilized-with-nerve-growth-factor-for-neu-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Seong Min Kim,1,2 Masashi Ueki,1 Xueli Ren,3 Jun Akimoto,1 Yasuyuki Sakai,2 Yoshihiro Ito1,3 1Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; 2Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; 3Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, JapanCorrespondence: Yoshihiro ItoNano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, JapanTel +81 48 467 5809Fax +81 48 467 9300Email y-ito@riken.jpBackground: Nerve regeneration is important for the treatment of degenerative diseases and neurons injured by accidents. Nerve growth factor (NGF) has been previously conjugated to materials for promotion of neurogenesis.Materials and methods: Photoreactive gelatin was prepared by chemical coupling of gelatin with azidobenzoic acid (P-gel), and then NGF was immobilized on substrates in the presence or absence of micropatterned photomasks. UV irradiation induced crosslinking reactions of P-gel with itself, NGF, and the plate for immobilization.Results: By adjustment of the P-gel concentration, the nanometer-order height of micropatterns was controlled. NGF was quantitatively immobilized with increasing amounts of P-gel. Immobilized NGF induced neurite outgrowth of PC12 cells, a cell line derived from a pheochromocytoma of the rat adrenal medulla, at the same level as soluble NGF. The immobilized NGF showed higher thermal stability than the soluble NGF and was repeatedly used without loss of biological activity. The 3D structure (height of the formed micropattern) regulated the behavior of neurite guidance. As a result, the orientation of neurites was regulated by the stripe pattern width.Conclusion: The micropattern-immobilized NGF nanolayer biochemically and topologically regulated neurite formation.Keywords: nerve growth factor, photoreactive gelatin, micropatterned immobilization, PC12 cell, neurite outgrowthKim SMUeki MRen XAkimoto JSakai YIto YDove Medical PressarticleNerve growth factorPhotoreactive gelatinMicropatterned immobilizationPC12 cellNeurite outgrowthMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 14, Pp 7683-7694 (2019)
institution DOAJ
collection DOAJ
language EN
topic Nerve growth factor
Photoreactive gelatin
Micropatterned immobilization
PC12 cell
Neurite outgrowth
Medicine (General)
R5-920
spellingShingle Nerve growth factor
Photoreactive gelatin
Micropatterned immobilization
PC12 cell
Neurite outgrowth
Medicine (General)
R5-920
Kim SM
Ueki M
Ren X
Akimoto J
Sakai Y
Ito Y
Micropatterned nanolayers immobilized with nerve growth factor for neurite formation of PC12 cells
description Seong Min Kim,1,2 Masashi Ueki,1 Xueli Ren,3 Jun Akimoto,1 Yasuyuki Sakai,2 Yoshihiro Ito1,3 1Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; 2Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; 3Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, JapanCorrespondence: Yoshihiro ItoNano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, JapanTel +81 48 467 5809Fax +81 48 467 9300Email y-ito@riken.jpBackground: Nerve regeneration is important for the treatment of degenerative diseases and neurons injured by accidents. Nerve growth factor (NGF) has been previously conjugated to materials for promotion of neurogenesis.Materials and methods: Photoreactive gelatin was prepared by chemical coupling of gelatin with azidobenzoic acid (P-gel), and then NGF was immobilized on substrates in the presence or absence of micropatterned photomasks. UV irradiation induced crosslinking reactions of P-gel with itself, NGF, and the plate for immobilization.Results: By adjustment of the P-gel concentration, the nanometer-order height of micropatterns was controlled. NGF was quantitatively immobilized with increasing amounts of P-gel. Immobilized NGF induced neurite outgrowth of PC12 cells, a cell line derived from a pheochromocytoma of the rat adrenal medulla, at the same level as soluble NGF. The immobilized NGF showed higher thermal stability than the soluble NGF and was repeatedly used without loss of biological activity. The 3D structure (height of the formed micropattern) regulated the behavior of neurite guidance. As a result, the orientation of neurites was regulated by the stripe pattern width.Conclusion: The micropattern-immobilized NGF nanolayer biochemically and topologically regulated neurite formation.Keywords: nerve growth factor, photoreactive gelatin, micropatterned immobilization, PC12 cell, neurite outgrowth
format article
author Kim SM
Ueki M
Ren X
Akimoto J
Sakai Y
Ito Y
author_facet Kim SM
Ueki M
Ren X
Akimoto J
Sakai Y
Ito Y
author_sort Kim SM
title Micropatterned nanolayers immobilized with nerve growth factor for neurite formation of PC12 cells
title_short Micropatterned nanolayers immobilized with nerve growth factor for neurite formation of PC12 cells
title_full Micropatterned nanolayers immobilized with nerve growth factor for neurite formation of PC12 cells
title_fullStr Micropatterned nanolayers immobilized with nerve growth factor for neurite formation of PC12 cells
title_full_unstemmed Micropatterned nanolayers immobilized with nerve growth factor for neurite formation of PC12 cells
title_sort micropatterned nanolayers immobilized with nerve growth factor for neurite formation of pc12 cells
publisher Dove Medical Press
publishDate 2019
url https://doaj.org/article/c1658d02b9684b00bd14fcdc3e9592a1
work_keys_str_mv AT kimsm micropatternednanolayersimmobilizedwithnervegrowthfactorforneuriteformationofpc12cells
AT uekim micropatternednanolayersimmobilizedwithnervegrowthfactorforneuriteformationofpc12cells
AT renx micropatternednanolayersimmobilizedwithnervegrowthfactorforneuriteformationofpc12cells
AT akimotoj micropatternednanolayersimmobilizedwithnervegrowthfactorforneuriteformationofpc12cells
AT sakaiy micropatternednanolayersimmobilizedwithnervegrowthfactorforneuriteformationofpc12cells
AT itoy micropatternednanolayersimmobilizedwithnervegrowthfactorforneuriteformationofpc12cells
_version_ 1718401457557864448