Unsupervised Deep Learning for Landslide Detection from Multispectral Sentinel-2 Imagery
This paper proposes a new approach based on an unsupervised deep learning (DL) model for landslide detection. Recently, supervised DL models using convolutional neural networks (CNN) have been widely studied for landslide detection. Even though these models provide robust performance and reliable re...
Guardado en:
Autores principales: | Hejar Shahabi, Maryam Rahimzad, Sepideh Tavakkoli Piralilou, Omid Ghorbanzadeh, Saied Homayouni, Thomas Blaschke, Samsung Lim, Pedram Ghamisi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c1812dc727b74ae59124462201e82446 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A comprehensive transferability evaluation of U-Net and ResU-Net for landslide detection from Sentinel-2 data (case study areas from Taiwan, China, and Japan)
por: Omid Ghorbanzadeh, et al.
Publicado: (2021) -
Landslide Characteristics and Evolution: What We Can Learn from Three Adjacent Landslides
por: Dongdong Yang, et al.
Publicado: (2021) -
Evaluating underlying causative factors for earthquake-induced landslides and landslide susceptibility mapping in Upper Indrawati Watershed, Nepal
por: Pawan Gautam, et al.
Publicado: (2021) -
Integration of Vulnerability and Hazard Factors for Landslide Risk Assessment
por: Patricia Arrogante-Funes, et al.
Publicado: (2021) -
Apriori association rule and K-means clustering algorithms for interpretation of pre-event landslide areas and landslide inventory mapping
por: Kusak Lutfiye, et al.
Publicado: (2021)