An interpretable machine learning model based on a quick pre-screening system enables accurate deterioration risk prediction for COVID-19

Abstract A high-performing interpretable model is proposed to predict the risk of deterioration in coronavirus disease 2019 (COVID-19) patients. The model was developed using a cohort of 3028 patients diagnosed with COVID-19 and exhibiting common clinical symptoms that were internally verified (AUC...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lijing Jia, Zijian Wei, Heng Zhang, Jiaming Wang, Ruiqi Jia, Manhong Zhou, Xueyan Li, Hankun Zhang, Xuedong Chen, Zheyuan Yu, Zhaohong Wang, Xiucheng Li, Tingting Li, Xiangge Liu, Pei Liu, Wei Chen, Jing Li, Kunlun He
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c181bf448c074d5eb8ad5f7c833512ad
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c181bf448c074d5eb8ad5f7c833512ad
record_format dspace
spelling oai:doaj.org-article:c181bf448c074d5eb8ad5f7c833512ad2021-12-05T12:13:39ZAn interpretable machine learning model based on a quick pre-screening system enables accurate deterioration risk prediction for COVID-1910.1038/s41598-021-02370-42045-2322https://doaj.org/article/c181bf448c074d5eb8ad5f7c833512ad2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-02370-4https://doaj.org/toc/2045-2322Abstract A high-performing interpretable model is proposed to predict the risk of deterioration in coronavirus disease 2019 (COVID-19) patients. The model was developed using a cohort of 3028 patients diagnosed with COVID-19 and exhibiting common clinical symptoms that were internally verified (AUC 0.8517, 95% CI 0.8433, 0.8601). A total of 15 high risk factors for deterioration and their approximate warning ranges were identified. This included prothrombin time (PT), prothrombin activity, lactate dehydrogenase, international normalized ratio, heart rate, body-mass index (BMI), D-dimer, creatine kinase, hematocrit, urine specific gravity, magnesium, globulin, activated partial thromboplastin time, lymphocyte count (L%), and platelet count. Four of these indicators (PT, heart rate, BMI, HCT) and comorbidities were selected for a streamlined combination of indicators to produce faster results. The resulting model showed good predictive performance (AUC 0.7941 95% CI 0.7926, 0.8151). A website for quick pre-screening online was also developed as part of the study.Lijing JiaZijian WeiHeng ZhangJiaming WangRuiqi JiaManhong ZhouXueyan LiHankun ZhangXuedong ChenZheyuan YuZhaohong WangXiucheng LiTingting LiXiangge LiuPei LiuWei ChenJing LiKunlun HeNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-16 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Lijing Jia
Zijian Wei
Heng Zhang
Jiaming Wang
Ruiqi Jia
Manhong Zhou
Xueyan Li
Hankun Zhang
Xuedong Chen
Zheyuan Yu
Zhaohong Wang
Xiucheng Li
Tingting Li
Xiangge Liu
Pei Liu
Wei Chen
Jing Li
Kunlun He
An interpretable machine learning model based on a quick pre-screening system enables accurate deterioration risk prediction for COVID-19
description Abstract A high-performing interpretable model is proposed to predict the risk of deterioration in coronavirus disease 2019 (COVID-19) patients. The model was developed using a cohort of 3028 patients diagnosed with COVID-19 and exhibiting common clinical symptoms that were internally verified (AUC 0.8517, 95% CI 0.8433, 0.8601). A total of 15 high risk factors for deterioration and their approximate warning ranges were identified. This included prothrombin time (PT), prothrombin activity, lactate dehydrogenase, international normalized ratio, heart rate, body-mass index (BMI), D-dimer, creatine kinase, hematocrit, urine specific gravity, magnesium, globulin, activated partial thromboplastin time, lymphocyte count (L%), and platelet count. Four of these indicators (PT, heart rate, BMI, HCT) and comorbidities were selected for a streamlined combination of indicators to produce faster results. The resulting model showed good predictive performance (AUC 0.7941 95% CI 0.7926, 0.8151). A website for quick pre-screening online was also developed as part of the study.
format article
author Lijing Jia
Zijian Wei
Heng Zhang
Jiaming Wang
Ruiqi Jia
Manhong Zhou
Xueyan Li
Hankun Zhang
Xuedong Chen
Zheyuan Yu
Zhaohong Wang
Xiucheng Li
Tingting Li
Xiangge Liu
Pei Liu
Wei Chen
Jing Li
Kunlun He
author_facet Lijing Jia
Zijian Wei
Heng Zhang
Jiaming Wang
Ruiqi Jia
Manhong Zhou
Xueyan Li
Hankun Zhang
Xuedong Chen
Zheyuan Yu
Zhaohong Wang
Xiucheng Li
Tingting Li
Xiangge Liu
Pei Liu
Wei Chen
Jing Li
Kunlun He
author_sort Lijing Jia
title An interpretable machine learning model based on a quick pre-screening system enables accurate deterioration risk prediction for COVID-19
title_short An interpretable machine learning model based on a quick pre-screening system enables accurate deterioration risk prediction for COVID-19
title_full An interpretable machine learning model based on a quick pre-screening system enables accurate deterioration risk prediction for COVID-19
title_fullStr An interpretable machine learning model based on a quick pre-screening system enables accurate deterioration risk prediction for COVID-19
title_full_unstemmed An interpretable machine learning model based on a quick pre-screening system enables accurate deterioration risk prediction for COVID-19
title_sort interpretable machine learning model based on a quick pre-screening system enables accurate deterioration risk prediction for covid-19
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/c181bf448c074d5eb8ad5f7c833512ad
work_keys_str_mv AT lijingjia aninterpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT zijianwei aninterpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT hengzhang aninterpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT jiamingwang aninterpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT ruiqijia aninterpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT manhongzhou aninterpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT xueyanli aninterpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT hankunzhang aninterpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT xuedongchen aninterpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT zheyuanyu aninterpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT zhaohongwang aninterpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT xiuchengli aninterpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT tingtingli aninterpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT xianggeliu aninterpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT peiliu aninterpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT weichen aninterpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT jingli aninterpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT kunlunhe aninterpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT lijingjia interpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT zijianwei interpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT hengzhang interpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT jiamingwang interpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT ruiqijia interpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT manhongzhou interpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT xueyanli interpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT hankunzhang interpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT xuedongchen interpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT zheyuanyu interpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT zhaohongwang interpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT xiuchengli interpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT tingtingli interpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT xianggeliu interpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT peiliu interpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT weichen interpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT jingli interpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
AT kunlunhe interpretablemachinelearningmodelbasedonaquickprescreeningsystemenablesaccuratedeteriorationriskpredictionforcovid19
_version_ 1718372157086498816