An interpretable machine learning model based on a quick pre-screening system enables accurate deterioration risk prediction for COVID-19
Abstract A high-performing interpretable model is proposed to predict the risk of deterioration in coronavirus disease 2019 (COVID-19) patients. The model was developed using a cohort of 3028 patients diagnosed with COVID-19 and exhibiting common clinical symptoms that were internally verified (AUC...
Guardado en:
Autores principales: | Lijing Jia, Zijian Wei, Heng Zhang, Jiaming Wang, Ruiqi Jia, Manhong Zhou, Xueyan Li, Hankun Zhang, Xuedong Chen, Zheyuan Yu, Zhaohong Wang, Xiucheng Li, Tingting Li, Xiangge Liu, Pei Liu, Wei Chen, Jing Li, Kunlun He |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c181bf448c074d5eb8ad5f7c833512ad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Restructured single parabolic band model for quick analysis in thermoelectricity
por: Jianbo Zhu, et al.
Publicado: (2021) -
Effects of organic fertilizers via quick artificial decomposition on crop growth
por: Xuemiao Ma, et al.
Publicado: (2021) -
Carbon nanoparticle suspension could help get a more accurate nodal staging for patient with rectal cancer
por: Wei Ge, et al.
Publicado: (2021) -
Quick cobol
por: Coddington, L. -
FCC riser quick separation system: a review
por: Zhi Li, et al.
Publicado: (2016)