An interpretable machine learning model based on a quick pre-screening system enables accurate deterioration risk prediction for COVID-19

Abstract A high-performing interpretable model is proposed to predict the risk of deterioration in coronavirus disease 2019 (COVID-19) patients. The model was developed using a cohort of 3028 patients diagnosed with COVID-19 and exhibiting common clinical symptoms that were internally verified (AUC...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Lijing Jia, Zijian Wei, Heng Zhang, Jiaming Wang, Ruiqi Jia, Manhong Zhou, Xueyan Li, Hankun Zhang, Xuedong Chen, Zheyuan Yu, Zhaohong Wang, Xiucheng Li, Tingting Li, Xiangge Liu, Pei Liu, Wei Chen, Jing Li, Kunlun He
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/c181bf448c074d5eb8ad5f7c833512ad
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

Documents similaires