An interpretable machine learning model based on a quick pre-screening system enables accurate deterioration risk prediction for COVID-19
Abstract A high-performing interpretable model is proposed to predict the risk of deterioration in coronavirus disease 2019 (COVID-19) patients. The model was developed using a cohort of 3028 patients diagnosed with COVID-19 and exhibiting common clinical symptoms that were internally verified (AUC...
Enregistré dans:
Auteurs principaux: | Lijing Jia, Zijian Wei, Heng Zhang, Jiaming Wang, Ruiqi Jia, Manhong Zhou, Xueyan Li, Hankun Zhang, Xuedong Chen, Zheyuan Yu, Zhaohong Wang, Xiucheng Li, Tingting Li, Xiangge Liu, Pei Liu, Wei Chen, Jing Li, Kunlun He |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c181bf448c074d5eb8ad5f7c833512ad |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Restructured single parabolic band model for quick analysis in thermoelectricity
par: Jianbo Zhu, et autres
Publié: (2021) -
Effects of organic fertilizers via quick artificial decomposition on crop growth
par: Xuemiao Ma, et autres
Publié: (2021) -
Carbon nanoparticle suspension could help get a more accurate nodal staging for patient with rectal cancer
par: Wei Ge, et autres
Publié: (2021) -
Quick cobol
par: Coddington, L. -
FCC riser quick separation system: a review
par: Zhi Li, et autres
Publié: (2016)