Metal oxide gas sensors: development and characterization

In this review, a number of oxide materials deposited on optical fibers have been studied to determine the most optimum materials for the production of optical sensors intended for the detection of petroleum gases, namely, butane, ammonia, and ethanol. The sensory properties of oxides materials, suc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ghimpu, Lidia
Formato: article
Lenguaje:EN
Publicado: D.Ghitu Institute of Electronic Engineering and Nanotechnologies 2018
Materias:
Acceso en línea:https://doaj.org/article/c184eb3b463d4ce4bc933fdf57d55cb6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this review, a number of oxide materials deposited on optical fibers have been studied to determine the most optimum materials for the production of optical sensors intended for the detection of petroleum gases, namely, butane, ammonia, and ethanol. The sensory properties of oxides materials, such as ZnO, TiO2, and SnO2, with different thicknesses have been described. First, the magnetron sputtering of zinc oxide and titanium dioxide have been described; second, the results of a study of the morphology and sensing characteristics of the optical fiber sensors have been discussed. The fabrication route of liquid petroleum gas (LPG) optical sensors based on optical fibers coated with ZnO, TiO2, and SnO2 nanocrystalline films has been analyzed. It has been shown that, after annealing of nanocrystaline ZnO films, the sensitivity increases. The prepared sensors exhibit a sensitivity of 2.77% for ZnO and 24.4% for TiO2.