Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers.
Accurate prediction of clinical changes of mild cognitive impairment (MCI) patients, including both qualitative change (i.e., conversion to Alzheimer's disease (AD)) and quantitative change (i.e., cognitive scores) at future time points, is important for early diagnosis of AD and for monitoring...
Enregistré dans:
Auteurs principaux: | Daoqiang Zhang, Dinggang Shen, Alzheimer's Disease Neuroimaging Initiative |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2012
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c186d02b49cf450c8c8f63cc1cc95a38 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Hierarchical interactions model for predicting Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) conversion.
par: Han Li, et autres
Publié: (2014) -
aBEAT: a toolbox for consistent analysis of longitudinal adult brain MRI.
par: Yakang Dai, et autres
Publié: (2013) -
Resting-state multi-spectrum functional connectivity networks for identification of MCI patients.
par: Chong-Yaw Wee, et autres
Publié: (2012) -
Basal forebrain degeneration precedes and predicts the cortical spread of Alzheimer’s pathology
par: Taylor W. Schmitz, et autres
Publié: (2016) -
A longitudinal study of atrophy in amnestic mild cognitive impairment and normal aging revealed by cortical thickness.
par: Zhijun Yao, et autres
Publié: (2012)