Insoluble (1 → 3), (1 → 4)-β-D-glucan is a component of cell walls in brown algae (Phaeophyceae) and is masked by alginates in tissues
Abstract Brown algae are photosynthetic multicellular marine organisms. They belong to the phylum of Stramenopiles, which are not closely related to land plants and green algae. Brown algae share common evolutionary features with other photosynthetic and multicellular organisms, including a carbohyd...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c1904d71daf94a36906153b94cec8b32 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Brown algae are photosynthetic multicellular marine organisms. They belong to the phylum of Stramenopiles, which are not closely related to land plants and green algae. Brown algae share common evolutionary features with other photosynthetic and multicellular organisms, including a carbohydrate-rich cell-wall. Brown algal cell walls are composed predominantly of the polyanionic polysaccharides alginates and fucose-containing sulfated polysaccharides. These polymers are prevalent over neutral and crystalline components, which are believed to be mostly, if not exclusively, cellulose. In an attempt to better understand brown algal cell walls, we performed an extensive glycan array analysis of a wide range of brown algal species. Here we provide the first demonstration that mixed-linkage (1 → 3), (1 → 4)-β-d-glucan (MLG) is common in brown algal cell walls. Ultra-Performance Liquid Chromatography analyses indicate that MLG in brown algae solely consists of trisaccharide units of contiguous (1 → 4)-β-linked glucose residues joined by (1 → 3)-β-linkages. This regular conformation may allow long stretches of the molecule to align and to form well-structured microfibrils. At the tissue level, immunofluorescence studies indicate that MLG epitopes in brown algae are unmasked by a pre-treatment with alginate lyases to remove alginates. These findings are further discussed in terms of the origin and evolution of MLG in the Stramenopile lineage. |
---|