Anode interfacial layer formation via reductive ethyl detaching of organic iodide in lithium–oxygen batteries
To fulfill the great promise of Li-O2 batteries, the high charge overpotential is a major challenge that has to be addressed. Here the authors introduce triethylsulfonium iodide as a redox mediator as well as an enabler of a protective layer on Li anode, leading to notable electrochemical performanc...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c199ea6741cb43d8bc13532846aab2d8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | To fulfill the great promise of Li-O2 batteries, the high charge overpotential is a major challenge that has to be addressed. Here the authors introduce triethylsulfonium iodide as a redox mediator as well as an enabler of a protective layer on Li anode, leading to notable electrochemical performance. |
---|