Unsupervised discovery of solid-state lithium ion conductors
Predictions of new solid-state Li-ion conductors are challenging due to the diverse chemistries and compositions involved. Here the authors combine unsupervised learning techniques and molecular dynamics simulations to discover new compounds with high Li-ion conductivity.
Guardado en:
Autores principales: | Ying Zhang, Xingfeng He, Zhiqian Chen, Qiang Bai, Adelaide M. Nolan, Charles A. Roberts, Debasish Banerjee, Tomoya Matsunaga, Yifei Mo, Chen Ling |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c1c724a0a205479583f3afacc34a107c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Origin of fast ion diffusion in super-ionic conductors
por: Xingfeng He, et al.
Publicado: (2017) -
Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors
por: David G. Mackanic, et al.
Publicado: (2019) -
A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries
por: Sangryun Kim, et al.
Publicado: (2019) -
Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
por: Andrij Vasylenko, et al.
Publicado: (2021) -
Functional additives for solid polymer electrolytes in flexible and high‐energy‐density solid‐state lithium‐ion batteries
por: Hao Chen, et al.
Publicado: (2021)