Unsupervised discovery of solid-state lithium ion conductors
Predictions of new solid-state Li-ion conductors are challenging due to the diverse chemistries and compositions involved. Here the authors combine unsupervised learning techniques and molecular dynamics simulations to discover new compounds with high Li-ion conductivity.
Enregistré dans:
Auteurs principaux: | Ying Zhang, Xingfeng He, Zhiqian Chen, Qiang Bai, Adelaide M. Nolan, Charles A. Roberts, Debasish Banerjee, Tomoya Matsunaga, Yifei Mo, Chen Ling |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c1c724a0a205479583f3afacc34a107c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Origin of fast ion diffusion in super-ionic conductors
par: Xingfeng He, et autres
Publié: (2017) -
Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors
par: David G. Mackanic, et autres
Publié: (2019) -
A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries
par: Sangryun Kim, et autres
Publié: (2019) -
Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
par: Andrij Vasylenko, et autres
Publié: (2021) -
Functional additives for solid polymer electrolytes in flexible and high‐energy‐density solid‐state lithium‐ion batteries
par: Hao Chen, et autres
Publié: (2021)