Feasibility of a Reusable Radiochromic Dosimeter
The current practice for patient-specific quality assurance (QA) uses ion chambers or diode arrays primarily because of their ease of use and reliability. A standard routine compares the dose distribution measured in a phantom with the dose distribution calculated by the treatment planning system fo...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c226b5bc503b4bff8eea1ba69458e3d8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c226b5bc503b4bff8eea1ba69458e3d8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c226b5bc503b4bff8eea1ba69458e3d82021-11-11T15:00:27ZFeasibility of a Reusable Radiochromic Dosimeter10.3390/app112199062076-3417https://doaj.org/article/c226b5bc503b4bff8eea1ba69458e3d82021-10-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/21/9906https://doaj.org/toc/2076-3417The current practice for patient-specific quality assurance (QA) uses ion chambers or diode arrays primarily because of their ease of use and reliability. A standard routine compares the dose distribution measured in a phantom with the dose distribution calculated by the treatment planning system for the same experimental conditions. For the particular problems encountered in the treatment planning of complex radiotherapy techniques, such as small fields/segments and dynamic delivery systems, additional tests are required to verify the accuracy of dose calculations. The dose distribution verification should be throughout the total 3D dose distribution for a high dose gradient in a small, irradiated volume, instead of the standard practice of one to several planes with 2D radiochromic (GAFChromic) film. To address this issue, we have developed a 3D radiochromic dosimeter that improves the rigor of current QA techniques by providing high-resolution, complete 3D verification for a wide range of clinical applications. The dosimeter is composed of polyurethane, a radical initiator, and a leuco dye, which is radiolytically oxidized to a dye absorbing at 633 nm. Since this chemical dosimeter is single-use, it represents a significant expense. The purpose of this research is to develop a cost-effective reusable dosimeter formulation. Based on prior reusability studies, three promising dosimeter formulations were studied using small volume optical cuvettes and irradiated to known clinically relevant doses of 0.5–10 Gy. After irradiation, the change in optical density was measured in a spectrophotometer. All three formulations retained linearity of optical density response to radiation upon re-irradiations. However, only one formulation retained dose sensitivity upon at least five re-irradiations, making it ideal for further evaluation as a 3D dosimeter.Joseph R. NewtonMaxwell RechtJoseph A. HaugerGabriel SegarraChase InglettPedro A. RomoJohn AdamovicsMDPI AGarticleradiation therapy verificationdosimetryradiochromicreusabilityTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 9906, p 9906 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
radiation therapy verification dosimetry radiochromic reusability Technology T Engineering (General). Civil engineering (General) TA1-2040 Biology (General) QH301-705.5 Physics QC1-999 Chemistry QD1-999 |
spellingShingle |
radiation therapy verification dosimetry radiochromic reusability Technology T Engineering (General). Civil engineering (General) TA1-2040 Biology (General) QH301-705.5 Physics QC1-999 Chemistry QD1-999 Joseph R. Newton Maxwell Recht Joseph A. Hauger Gabriel Segarra Chase Inglett Pedro A. Romo John Adamovics Feasibility of a Reusable Radiochromic Dosimeter |
description |
The current practice for patient-specific quality assurance (QA) uses ion chambers or diode arrays primarily because of their ease of use and reliability. A standard routine compares the dose distribution measured in a phantom with the dose distribution calculated by the treatment planning system for the same experimental conditions. For the particular problems encountered in the treatment planning of complex radiotherapy techniques, such as small fields/segments and dynamic delivery systems, additional tests are required to verify the accuracy of dose calculations. The dose distribution verification should be throughout the total 3D dose distribution for a high dose gradient in a small, irradiated volume, instead of the standard practice of one to several planes with 2D radiochromic (GAFChromic) film. To address this issue, we have developed a 3D radiochromic dosimeter that improves the rigor of current QA techniques by providing high-resolution, complete 3D verification for a wide range of clinical applications. The dosimeter is composed of polyurethane, a radical initiator, and a leuco dye, which is radiolytically oxidized to a dye absorbing at 633 nm. Since this chemical dosimeter is single-use, it represents a significant expense. The purpose of this research is to develop a cost-effective reusable dosimeter formulation. Based on prior reusability studies, three promising dosimeter formulations were studied using small volume optical cuvettes and irradiated to known clinically relevant doses of 0.5–10 Gy. After irradiation, the change in optical density was measured in a spectrophotometer. All three formulations retained linearity of optical density response to radiation upon re-irradiations. However, only one formulation retained dose sensitivity upon at least five re-irradiations, making it ideal for further evaluation as a 3D dosimeter. |
format |
article |
author |
Joseph R. Newton Maxwell Recht Joseph A. Hauger Gabriel Segarra Chase Inglett Pedro A. Romo John Adamovics |
author_facet |
Joseph R. Newton Maxwell Recht Joseph A. Hauger Gabriel Segarra Chase Inglett Pedro A. Romo John Adamovics |
author_sort |
Joseph R. Newton |
title |
Feasibility of a Reusable Radiochromic Dosimeter |
title_short |
Feasibility of a Reusable Radiochromic Dosimeter |
title_full |
Feasibility of a Reusable Radiochromic Dosimeter |
title_fullStr |
Feasibility of a Reusable Radiochromic Dosimeter |
title_full_unstemmed |
Feasibility of a Reusable Radiochromic Dosimeter |
title_sort |
feasibility of a reusable radiochromic dosimeter |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/c226b5bc503b4bff8eea1ba69458e3d8 |
work_keys_str_mv |
AT josephrnewton feasibilityofareusableradiochromicdosimeter AT maxwellrecht feasibilityofareusableradiochromicdosimeter AT josephahauger feasibilityofareusableradiochromicdosimeter AT gabrielsegarra feasibilityofareusableradiochromicdosimeter AT chaseinglett feasibilityofareusableradiochromicdosimeter AT pedroaromo feasibilityofareusableradiochromicdosimeter AT johnadamovics feasibilityofareusableradiochromicdosimeter |
_version_ |
1718437924652974080 |