A dual prokaryotic (E. coli) expression system (pdMAX)

In this study, we introduced an efficient subcloning and expression system with two inducible prokaryotic expression promoters, arabinose and lac, in a single plasmid in Escherichia coli. The arabinose promoter unit allows for the expression of a FLAG-tagged protein, while the isopropyl-β-D-thiogala...

Full description

Saved in:
Bibliographic Details
Main Authors: Manabu Murakami, Agnieszka M. Murakami, Shirou Itagaki
Format: article
Language:EN
Published: Public Library of Science (PLoS) 2021
Subjects:
R
Q
Online Access:https://doaj.org/article/c22896a72e1d4403b3c1b5d392e166a1
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we introduced an efficient subcloning and expression system with two inducible prokaryotic expression promoters, arabinose and lac, in a single plasmid in Escherichia coli. The arabinose promoter unit allows for the expression of a FLAG-tagged protein, while the isopropyl-β-D-thiogalactoside (IPTG)-inducible unit allows for the expression of a Myc-tagged protein. An efficient subcloning (DNA insertion) system (iUnit) follows each promoter. The iUnit, based on a toxin that targets DNA topoisomerase of E. coli, allows for effective selection with arabinose or IPTG induction. With the dual promoter plasmid (pdMAX) system, expressed lacZ (β-galactosidase) activity was significantly decreased compared with the original solo expression system. Despite this disadvantage, we believe that the pdMAX system remains useful. A recombinant plasmid (pdMAX/ara/DsRed/IPTG/EGFP; pdMAX/DsRed/EGFP) with DsRed in the arabinose expression unit and EGFP in the IPTG expression unit showed fluorescent protein expression following additional low-temperature incubation. Thus, the novel pdMAX system allowed efficient subcloning of two different genes and can be used to induce and analyze the expression of two distinct genes. The proposed system can be applied to various types of prokaryotic gene expression analysis.