Sea-Land Clutter Classification Based on Graph Spectrum Features
In this paper, an approach for radar clutter, especially sea and land clutter classification, is considered under the following conditions: the average amplitude levels of the clutter are close to each other, and the distributions of the clutter are unknown. The proposed approach divides the dataset...
Enregistré dans:
Auteurs principaux: | Le Zhang, Anke Xue, Xiaodong Zhao, Shuwen Xu, Kecheng Mao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c229db41ccb64d25b7c8298feedcaf10 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Research on adaptive clutter suppression for ground penetrating radar based on wavelet transform and K-SVD
par: Xueli WU, et autres
Publié: (2021) -
Modelación de distribuciones novedosas para la representación del Clutter de Radar
par: José Raúl Machado-Fernández
Publié: (2017) -
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
par: Minghua Zhang, et autres
Publié: (2021) -
Optimization of Radar Parameters for Maximum Detection Probability Under Generalized Discrete Clutter Conditions Using Stochastic Geometry
par: Shobha Sundar Ram, et autres
Publié: (2021) -
Ionospheric Clutter Suppression with an Auxiliary Crossed-Loop Antenna in a High-Frequency Radar for Sea Surface Remote Sensing
par: Shuqin He, et autres
Publié: (2021)