Sea-Land Clutter Classification Based on Graph Spectrum Features
In this paper, an approach for radar clutter, especially sea and land clutter classification, is considered under the following conditions: the average amplitude levels of the clutter are close to each other, and the distributions of the clutter are unknown. The proposed approach divides the dataset...
Guardado en:
Autores principales: | Le Zhang, Anke Xue, Xiaodong Zhao, Shuwen Xu, Kecheng Mao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c229db41ccb64d25b7c8298feedcaf10 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Research on adaptive clutter suppression for ground penetrating radar based on wavelet transform and K-SVD
por: Xueli WU, et al.
Publicado: (2021) -
Modelación de distribuciones novedosas para la representación del Clutter de Radar
por: José Raúl Machado-Fernández
Publicado: (2017) -
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
por: Minghua Zhang, et al.
Publicado: (2021) -
Optimization of Radar Parameters for Maximum Detection Probability Under Generalized Discrete Clutter Conditions Using Stochastic Geometry
por: Shobha Sundar Ram, et al.
Publicado: (2021) -
Ionospheric Clutter Suppression with an Auxiliary Crossed-Loop Antenna in a High-Frequency Radar for Sea Surface Remote Sensing
por: Shuqin He, et al.
Publicado: (2021)