Hierarchical clustering methods in a task to find abnormal observations based on groups with broken symmetry
The work is aimed at solving the actual problem of identification and interpretation of anomalous observations in the study of socio-economic processes. The proposed method is based on the use of a cluster approach to detecting anomalous observations. Clustering is performed using hierarchical metho...
Enregistré dans:
| Auteurs principaux: | A. N. Kislyakov, S. V. Polyakov |
|---|---|
| Format: | article |
| Langue: | EN RU |
| Publié: |
North-West institute of management of the Russian Presidential Academy of National Economy and Public Administration
2020
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/c231fd1be269415e93b2ca53769f9a57 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Symmetry and Symmetry Breaking in Physics: From Geometry to Topology
par: Luciano Boi
Publié: (2021) -
The Probability Flow in the Stock Market and Spontaneous Symmetry Breaking in Quantum Finance
par: Ivan Arraut, et autres
Publié: (2021) - Symmetry
-
Clustering Vertex-Weighted Graphs by Spectral Methods
par: Juan-Luis García-Zapata, et autres
Publié: (2021) -
Abnormal Detection of Cash-Out Groups in IoT Based Payment
par: Hao Zhou, et autres
Publié: (2021)