Multinational patterns of seasonal asymmetry in human movement influence infectious disease dynamics
Fine scale mobile phone data is improving capacity to understand seasonal patterns in human movement. Here, the authors use multi-year movement data across three nations, as well as a model of pathogen spread, to understand the consequences of seasonal travel for disease dynamics.
Guardado en:
Autores principales: | Amy Wesolowski, Elisabeth zu Erbach-Schoenberg, Andrew J. Tatem, Christopher Lourenço, Cecile Viboud, Vivek Charu, Nathan Eagle, Kenth Engø-Monsen, Taimur Qureshi, Caroline O. Buckee, C. J. E. Metcalf |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c2381eec2b0b41a3b2e74c1f98a55695 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Trip duration drives shift in travel network structure with implications for the predictability of spatial disease spread.
por: John R Giles, et al.
Publicado: (2021) -
Mobility and phone call behavior explain patterns in poverty at high-resolution across multiple settings
por: Jessica E. Steele, et al.
Publicado: (2021) -
Low parasite connectivity among three malaria hotspots in Thailand
por: Hsiao-Han Chang, et al.
Publicado: (2021) -
Incorporating human mobility data improves forecasts of Dengue fever in Thailand
por: Mathew V. Kiang, et al.
Publicado: (2021) -
Multinational monitor
Publicado: (1980)