A Nondestructive Method of Measuring Zebrafish Adipose Tissue Based on Micro-Computed Tomography (Micro-CT)
Due to problems such as unbalanced intake of nutrients or excessive intake of energy, cultured fish accumulate fat in places such as the abdominal cavity, liver, and muscle, resulting in fatty liver, reducing the quality of fish meat, and even causing many fish deaths, resulting in losses to aquacul...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c23aa270875148d4892b099e4b62c4ce |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Due to problems such as unbalanced intake of nutrients or excessive intake of energy, cultured fish accumulate fat in places such as the abdominal cavity, liver, and muscle, resulting in fatty liver, reducing the quality of fish meat, and even causing many fish deaths, resulting in losses to aquaculture production. Therefore, research on lipid metabolism in fish is important and has attracted increasing attention. The detection of fish body fat distribution and content is a key to such research. The existing methods for detecting fat distribution and content in fish have limitations, such as cumbersome procedures and damage to fish tissues, and thus, is imperative to develop a simple, fast, nondestructive fat detection technology. Taking zebrafish as the research material, this study established an imaging technology for the rapid and nondestructive detection of the fat distribution and content of fish by micro-computed tomography (micro-CT), optimized the fat CT-scanning method, determined the steps of fat quantitation in the CTAn data processing software, and constructed a three-dimensional (3D) model of zebrafish adipose tissue. This technology reveals the distribution of fish adipose tissue in an all-round way, and thus, it will play an important role in the study of lipid metabolism in fish. |
---|