A graph-based cell tracking algorithm with few manually tunable parameters and automated segmentation error correction.
Automatic cell segmentation and tracking enables to gain quantitative insights into the processes driving cell migration. To investigate new data with minimal manual effort, cell tracking algorithms should be easy to apply and reduce manual curation time by providing automatic correction of segmenta...
Enregistré dans:
Auteurs principaux: | Katharina Löffler, Tim Scherr, Ralf Mikut |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c2468105f9d34cb293f7a8ada0e5f24e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Sarc-Graph: Automated segmentation, tracking, and analysis of sarcomeres in hiPSC-derived cardiomyocytes.
par: Bill Zhao, et autres
Publié: (2021) -
A route pruning algorithm for an automated geographic location graph construction
par: Christoph Schweimer, et autres
Publié: (2021) -
Machine learning methods for automated classification of tumors with papillary thyroid carcinoma-like nuclei: A quantitative analysis.
par: Moritz Böhland, et autres
Publié: (2021) -
Strain-tunable van der Waals interactions in few-layer black phosphorus
par: Shenyang Huang, et autres
Publié: (2019) -
Author Correction: Replication and Refinement of an Algorithm for Automated Drusen Segmentation on Optical Coherence Tomography
par: Maximilian W. M. Wintergerst, et autres
Publié: (2021)