A graph-based cell tracking algorithm with few manually tunable parameters and automated segmentation error correction.
Automatic cell segmentation and tracking enables to gain quantitative insights into the processes driving cell migration. To investigate new data with minimal manual effort, cell tracking algorithms should be easy to apply and reduce manual curation time by providing automatic correction of segmenta...
Guardado en:
Autores principales: | Katharina Löffler, Tim Scherr, Ralf Mikut |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c2468105f9d34cb293f7a8ada0e5f24e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sarc-Graph: Automated segmentation, tracking, and analysis of sarcomeres in hiPSC-derived cardiomyocytes.
por: Bill Zhao, et al.
Publicado: (2021) -
A route pruning algorithm for an automated geographic location graph construction
por: Christoph Schweimer, et al.
Publicado: (2021) -
Machine learning methods for automated classification of tumors with papillary thyroid carcinoma-like nuclei: A quantitative analysis.
por: Moritz Böhland, et al.
Publicado: (2021) -
Strain-tunable van der Waals interactions in few-layer black phosphorus
por: Shenyang Huang, et al.
Publicado: (2019) -
Author Correction: Replication and Refinement of an Algorithm for Automated Drusen Segmentation on Optical Coherence Tomography
por: Maximilian W. M. Wintergerst, et al.
Publicado: (2021)