Towards an improved understanding of $$\varvec{\eta \rightarrow \gamma ^*\gamma ^*}$$ η → γ ∗ γ ∗

Abstract We argue that high-quality data on the reaction $$e^+e^-\rightarrow \pi ^+\pi ^-\eta $$ e + e - → π + π - η will allow one to determine the doubly-virtual form factor $$\eta \rightarrow \gamma ^*\gamma ^*$$ η → γ ∗ γ ∗ in a model-independent way with controlled accuracy. This is an importan...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: S. Holz, J. Plenter, C. W. Xiao, T. Dato, C. Hanhart, B. Kubis, U.-G. Meißner, A. Wirzba
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2021
Materias:
Acceso en línea:https://doaj.org/article/c24d9c98afcc46729854564dcf026a6e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c24d9c98afcc46729854564dcf026a6e
record_format dspace
spelling oai:doaj.org-article:c24d9c98afcc46729854564dcf026a6e2021-11-14T12:13:49ZTowards an improved understanding of $$\varvec{\eta \rightarrow \gamma ^*\gamma ^*}$$ η → γ ∗ γ ∗10.1140/epjc/s10052-021-09661-01434-60441434-6052https://doaj.org/article/c24d9c98afcc46729854564dcf026a6e2021-11-01T00:00:00Zhttps://doi.org/10.1140/epjc/s10052-021-09661-0https://doaj.org/toc/1434-6044https://doaj.org/toc/1434-6052Abstract We argue that high-quality data on the reaction $$e^+e^-\rightarrow \pi ^+\pi ^-\eta $$ e + e - → π + π - η will allow one to determine the doubly-virtual form factor $$\eta \rightarrow \gamma ^*\gamma ^*$$ η → γ ∗ γ ∗ in a model-independent way with controlled accuracy. This is an important step towards a reliable evaluation of the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon. When analyzing the existing data for $$e^+e^-\rightarrow \pi ^+\pi ^-\eta $$ e + e - → π + π - η for total energies squared $$k^2>1\,\text {GeV}^2$$ k 2 > 1 GeV 2 , we demonstrate that the effect of the $$a_2$$ a 2 meson provides a natural breaking mechanism for the commonly employed factorization ansatz in the doubly-virtual form factor $$F_{\eta \gamma ^*\gamma ^*}(q^2,k^2)$$ F η γ ∗ γ ∗ ( q 2 , k 2 ) . However, better data are needed to draw firm conclusions.S. HolzJ. PlenterC. W. XiaoT. DatoC. HanhartB. KubisU.-G. MeißnerA. WirzbaSpringerOpenarticleAstrophysicsQB460-466Nuclear and particle physics. Atomic energy. RadioactivityQC770-798ENEuropean Physical Journal C: Particles and Fields, Vol 81, Iss 11, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Astrophysics
QB460-466
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
spellingShingle Astrophysics
QB460-466
Nuclear and particle physics. Atomic energy. Radioactivity
QC770-798
S. Holz
J. Plenter
C. W. Xiao
T. Dato
C. Hanhart
B. Kubis
U.-G. Meißner
A. Wirzba
Towards an improved understanding of $$\varvec{\eta \rightarrow \gamma ^*\gamma ^*}$$ η → γ ∗ γ ∗
description Abstract We argue that high-quality data on the reaction $$e^+e^-\rightarrow \pi ^+\pi ^-\eta $$ e + e - → π + π - η will allow one to determine the doubly-virtual form factor $$\eta \rightarrow \gamma ^*\gamma ^*$$ η → γ ∗ γ ∗ in a model-independent way with controlled accuracy. This is an important step towards a reliable evaluation of the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon. When analyzing the existing data for $$e^+e^-\rightarrow \pi ^+\pi ^-\eta $$ e + e - → π + π - η for total energies squared $$k^2>1\,\text {GeV}^2$$ k 2 > 1 GeV 2 , we demonstrate that the effect of the $$a_2$$ a 2 meson provides a natural breaking mechanism for the commonly employed factorization ansatz in the doubly-virtual form factor $$F_{\eta \gamma ^*\gamma ^*}(q^2,k^2)$$ F η γ ∗ γ ∗ ( q 2 , k 2 ) . However, better data are needed to draw firm conclusions.
format article
author S. Holz
J. Plenter
C. W. Xiao
T. Dato
C. Hanhart
B. Kubis
U.-G. Meißner
A. Wirzba
author_facet S. Holz
J. Plenter
C. W. Xiao
T. Dato
C. Hanhart
B. Kubis
U.-G. Meißner
A. Wirzba
author_sort S. Holz
title Towards an improved understanding of $$\varvec{\eta \rightarrow \gamma ^*\gamma ^*}$$ η → γ ∗ γ ∗
title_short Towards an improved understanding of $$\varvec{\eta \rightarrow \gamma ^*\gamma ^*}$$ η → γ ∗ γ ∗
title_full Towards an improved understanding of $$\varvec{\eta \rightarrow \gamma ^*\gamma ^*}$$ η → γ ∗ γ ∗
title_fullStr Towards an improved understanding of $$\varvec{\eta \rightarrow \gamma ^*\gamma ^*}$$ η → γ ∗ γ ∗
title_full_unstemmed Towards an improved understanding of $$\varvec{\eta \rightarrow \gamma ^*\gamma ^*}$$ η → γ ∗ γ ∗
title_sort towards an improved understanding of $$\varvec{\eta \rightarrow \gamma ^*\gamma ^*}$$ η → γ ∗ γ ∗
publisher SpringerOpen
publishDate 2021
url https://doaj.org/article/c24d9c98afcc46729854564dcf026a6e
work_keys_str_mv AT sholz towardsanimprovedunderstandingofvarvecetarightarrowgammagammaēgg
AT jplenter towardsanimprovedunderstandingofvarvecetarightarrowgammagammaēgg
AT cwxiao towardsanimprovedunderstandingofvarvecetarightarrowgammagammaēgg
AT tdato towardsanimprovedunderstandingofvarvecetarightarrowgammagammaēgg
AT chanhart towardsanimprovedunderstandingofvarvecetarightarrowgammagammaēgg
AT bkubis towardsanimprovedunderstandingofvarvecetarightarrowgammagammaēgg
AT ugmeißner towardsanimprovedunderstandingofvarvecetarightarrowgammagammaēgg
AT awirzba towardsanimprovedunderstandingofvarvecetarightarrowgammagammaēgg
_version_ 1718429371253915648