A syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States

Abstract Coronavirus SARS-COV-2 infections continue to spread across the world, yet effective large-scale disease detection and prediction remain limited. COVID Control: A Johns Hopkins University Study, is a novel syndromic surveillance approach, which collects body temperature and COVID-like illne...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Amparo Güemes, Soumyajit Ray, Khaled Aboumerhi, Michael R. Desjardins, Anton Kvit, Anne E. Corrigan, Brendan Fries, Timothy Shields, Robert D. Stevens, Frank C. Curriero, Ralph Etienne-Cummings
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c25c570211104bd6968c067d6bb6089d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c25c570211104bd6968c067d6bb6089d
record_format dspace
spelling oai:doaj.org-article:c25c570211104bd6968c067d6bb6089d2021-12-02T13:34:51ZA syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States10.1038/s41598-021-84145-52045-2322https://doaj.org/article/c25c570211104bd6968c067d6bb6089d2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-84145-5https://doaj.org/toc/2045-2322Abstract Coronavirus SARS-COV-2 infections continue to spread across the world, yet effective large-scale disease detection and prediction remain limited. COVID Control: A Johns Hopkins University Study, is a novel syndromic surveillance approach, which collects body temperature and COVID-like illness (CLI) symptoms across the US using a smartphone app and applies spatio-temporal clustering techniques and cross-correlation analysis to create maps of abnormal symptomatology incidence that are made publicly available. The results of the cross-correlation analysis identify optimal temporal lags between symptoms and a range of COVID-19 outcomes, with new taste/smell loss showing the highest correlations. We also identified temporal clusters of change in taste/smell entries and confirmed COVID-19 incidence in Baltimore City and County. Further, we utilized an extended simulated dataset to showcase our analytics in Maryland. The resulting clusters can serve as indicators of emerging COVID-19 outbreaks, and support syndromic surveillance as an early warning system for disease prevention and control.Amparo GüemesSoumyajit RayKhaled AboumerhiMichael R. DesjardinsAnton KvitAnne E. CorriganBrendan FriesTimothy ShieldsRobert D. StevensFrank C. CurrieroRalph Etienne-CummingsNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Amparo Güemes
Soumyajit Ray
Khaled Aboumerhi
Michael R. Desjardins
Anton Kvit
Anne E. Corrigan
Brendan Fries
Timothy Shields
Robert D. Stevens
Frank C. Curriero
Ralph Etienne-Cummings
A syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States
description Abstract Coronavirus SARS-COV-2 infections continue to spread across the world, yet effective large-scale disease detection and prediction remain limited. COVID Control: A Johns Hopkins University Study, is a novel syndromic surveillance approach, which collects body temperature and COVID-like illness (CLI) symptoms across the US using a smartphone app and applies spatio-temporal clustering techniques and cross-correlation analysis to create maps of abnormal symptomatology incidence that are made publicly available. The results of the cross-correlation analysis identify optimal temporal lags between symptoms and a range of COVID-19 outcomes, with new taste/smell loss showing the highest correlations. We also identified temporal clusters of change in taste/smell entries and confirmed COVID-19 incidence in Baltimore City and County. Further, we utilized an extended simulated dataset to showcase our analytics in Maryland. The resulting clusters can serve as indicators of emerging COVID-19 outbreaks, and support syndromic surveillance as an early warning system for disease prevention and control.
format article
author Amparo Güemes
Soumyajit Ray
Khaled Aboumerhi
Michael R. Desjardins
Anton Kvit
Anne E. Corrigan
Brendan Fries
Timothy Shields
Robert D. Stevens
Frank C. Curriero
Ralph Etienne-Cummings
author_facet Amparo Güemes
Soumyajit Ray
Khaled Aboumerhi
Michael R. Desjardins
Anton Kvit
Anne E. Corrigan
Brendan Fries
Timothy Shields
Robert D. Stevens
Frank C. Curriero
Ralph Etienne-Cummings
author_sort Amparo Güemes
title A syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States
title_short A syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States
title_full A syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States
title_fullStr A syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States
title_full_unstemmed A syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States
title_sort syndromic surveillance tool to detect anomalous clusters of covid-19 symptoms in the united states
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/c25c570211104bd6968c067d6bb6089d
work_keys_str_mv AT amparoguemes asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT soumyajitray asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT khaledaboumerhi asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT michaelrdesjardins asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT antonkvit asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT anneecorrigan asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT brendanfries asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT timothyshields asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT robertdstevens asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT frankccurriero asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT ralphetiennecummings asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT amparoguemes syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT soumyajitray syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT khaledaboumerhi syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT michaelrdesjardins syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT antonkvit syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT anneecorrigan syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT brendanfries syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT timothyshields syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT robertdstevens syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT frankccurriero syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
AT ralphetiennecummings syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates
_version_ 1718392759816028160