A syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States
Abstract Coronavirus SARS-COV-2 infections continue to spread across the world, yet effective large-scale disease detection and prediction remain limited. COVID Control: A Johns Hopkins University Study, is a novel syndromic surveillance approach, which collects body temperature and COVID-like illne...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c25c570211104bd6968c067d6bb6089d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c25c570211104bd6968c067d6bb6089d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c25c570211104bd6968c067d6bb6089d2021-12-02T13:34:51ZA syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States10.1038/s41598-021-84145-52045-2322https://doaj.org/article/c25c570211104bd6968c067d6bb6089d2021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-84145-5https://doaj.org/toc/2045-2322Abstract Coronavirus SARS-COV-2 infections continue to spread across the world, yet effective large-scale disease detection and prediction remain limited. COVID Control: A Johns Hopkins University Study, is a novel syndromic surveillance approach, which collects body temperature and COVID-like illness (CLI) symptoms across the US using a smartphone app and applies spatio-temporal clustering techniques and cross-correlation analysis to create maps of abnormal symptomatology incidence that are made publicly available. The results of the cross-correlation analysis identify optimal temporal lags between symptoms and a range of COVID-19 outcomes, with new taste/smell loss showing the highest correlations. We also identified temporal clusters of change in taste/smell entries and confirmed COVID-19 incidence in Baltimore City and County. Further, we utilized an extended simulated dataset to showcase our analytics in Maryland. The resulting clusters can serve as indicators of emerging COVID-19 outbreaks, and support syndromic surveillance as an early warning system for disease prevention and control.Amparo GüemesSoumyajit RayKhaled AboumerhiMichael R. DesjardinsAnton KvitAnne E. CorriganBrendan FriesTimothy ShieldsRobert D. StevensFrank C. CurrieroRalph Etienne-CummingsNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Amparo Güemes Soumyajit Ray Khaled Aboumerhi Michael R. Desjardins Anton Kvit Anne E. Corrigan Brendan Fries Timothy Shields Robert D. Stevens Frank C. Curriero Ralph Etienne-Cummings A syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States |
description |
Abstract Coronavirus SARS-COV-2 infections continue to spread across the world, yet effective large-scale disease detection and prediction remain limited. COVID Control: A Johns Hopkins University Study, is a novel syndromic surveillance approach, which collects body temperature and COVID-like illness (CLI) symptoms across the US using a smartphone app and applies spatio-temporal clustering techniques and cross-correlation analysis to create maps of abnormal symptomatology incidence that are made publicly available. The results of the cross-correlation analysis identify optimal temporal lags between symptoms and a range of COVID-19 outcomes, with new taste/smell loss showing the highest correlations. We also identified temporal clusters of change in taste/smell entries and confirmed COVID-19 incidence in Baltimore City and County. Further, we utilized an extended simulated dataset to showcase our analytics in Maryland. The resulting clusters can serve as indicators of emerging COVID-19 outbreaks, and support syndromic surveillance as an early warning system for disease prevention and control. |
format |
article |
author |
Amparo Güemes Soumyajit Ray Khaled Aboumerhi Michael R. Desjardins Anton Kvit Anne E. Corrigan Brendan Fries Timothy Shields Robert D. Stevens Frank C. Curriero Ralph Etienne-Cummings |
author_facet |
Amparo Güemes Soumyajit Ray Khaled Aboumerhi Michael R. Desjardins Anton Kvit Anne E. Corrigan Brendan Fries Timothy Shields Robert D. Stevens Frank C. Curriero Ralph Etienne-Cummings |
author_sort |
Amparo Güemes |
title |
A syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States |
title_short |
A syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States |
title_full |
A syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States |
title_fullStr |
A syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States |
title_full_unstemmed |
A syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States |
title_sort |
syndromic surveillance tool to detect anomalous clusters of covid-19 symptoms in the united states |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/c25c570211104bd6968c067d6bb6089d |
work_keys_str_mv |
AT amparoguemes asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT soumyajitray asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT khaledaboumerhi asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT michaelrdesjardins asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT antonkvit asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT anneecorrigan asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT brendanfries asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT timothyshields asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT robertdstevens asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT frankccurriero asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT ralphetiennecummings asyndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT amparoguemes syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT soumyajitray syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT khaledaboumerhi syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT michaelrdesjardins syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT antonkvit syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT anneecorrigan syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT brendanfries syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT timothyshields syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT robertdstevens syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT frankccurriero syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates AT ralphetiennecummings syndromicsurveillancetooltodetectanomalousclustersofcovid19symptomsintheunitedstates |
_version_ |
1718392759816028160 |