A syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States
Abstract Coronavirus SARS-COV-2 infections continue to spread across the world, yet effective large-scale disease detection and prediction remain limited. COVID Control: A Johns Hopkins University Study, is a novel syndromic surveillance approach, which collects body temperature and COVID-like illne...
Enregistré dans:
Auteurs principaux: | Amparo Güemes, Soumyajit Ray, Khaled Aboumerhi, Michael R. Desjardins, Anton Kvit, Anne E. Corrigan, Brendan Fries, Timothy Shields, Robert D. Stevens, Frank C. Curriero, Ralph Etienne-Cummings |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c25c570211104bd6968c067d6bb6089d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Author Correction: A syndromic surveillance tool to detect anomalous clusters of COVID-19 symptoms in the United States
par: Amparo Güemes, et autres
Publié: (2021) -
Holographic QCD and the muon anomalous magnetic moment
par: Josef Leutgeb, et autres
Publié: (2021) -
Anomalous electrical magnetochiral effect by chiral spin-cluster scattering
par: Hiroaki Ishizuka, et autres
Publié: (2020) -
Prediction of dengue incidence using search query surveillance.
par: Benjamin M Althouse, et autres
Publié: (2011) -
Defining Polio: Closing the Gap in Global Surveillance
par: Bachir Tajaldin, et autres
Publié: (2015)