Another proof of the persistence of Serre symmetry in the Frölicher spectral sequence

Serre’s duality theorem implies a symmetry between the Hodge numbers, hp,q = hn−p,n−q, on a compact complex n–manifold. Equivalently, the first page of the associated Frölicher spectral sequence satisfies dimE1p,q=dimE1n−p,n−q\dim E_1^{p,q} = \dim E_1^{n - p,n - q} for all p, q. Adapting an argument...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Milivojević Aleksandar
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2020
Materias:
Acceso en línea:https://doaj.org/article/c27b854218274db4a920adca1e761217
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c27b854218274db4a920adca1e761217
record_format dspace
spelling oai:doaj.org-article:c27b854218274db4a920adca1e7612172021-12-02T17:14:47ZAnother proof of the persistence of Serre symmetry in the Frölicher spectral sequence2300-744310.1515/coma-2020-0008https://doaj.org/article/c27b854218274db4a920adca1e7612172020-03-01T00:00:00Zhttps://doi.org/10.1515/coma-2020-0008https://doaj.org/toc/2300-7443Serre’s duality theorem implies a symmetry between the Hodge numbers, hp,q = hn−p,n−q, on a compact complex n–manifold. Equivalently, the first page of the associated Frölicher spectral sequence satisfies dimE1p,q=dimE1n−p,n−q\dim E_1^{p,q} = \dim E_1^{n - p,n - q} for all p, q. Adapting an argument of Chern, Hirzebruch, and Serre [3] in an obvious way, in this short note we observe that this “Serre symmetry” dimEkp,q=dimEkn−p,n−q\dim E_k^{p,q} = \dim E_k^{n - p,n - q} holds on all subsequent pages of the spectral sequence as well. The argument shows that an analogous statement holds for the Frölicher spectral sequence of an almost complex structure on a nilpotent real Lie group as considered by Cirici and Wilson in [4].Milivojević AleksandarDe Gruyterarticleserre symmetryfrölicher spectral sequence32q9953c56MathematicsQA1-939ENComplex Manifolds, Vol 7, Iss 1, Pp 141-144 (2020)
institution DOAJ
collection DOAJ
language EN
topic serre symmetry
frölicher spectral sequence
32q99
53c56
Mathematics
QA1-939
spellingShingle serre symmetry
frölicher spectral sequence
32q99
53c56
Mathematics
QA1-939
Milivojević Aleksandar
Another proof of the persistence of Serre symmetry in the Frölicher spectral sequence
description Serre’s duality theorem implies a symmetry between the Hodge numbers, hp,q = hn−p,n−q, on a compact complex n–manifold. Equivalently, the first page of the associated Frölicher spectral sequence satisfies dimE1p,q=dimE1n−p,n−q\dim E_1^{p,q} = \dim E_1^{n - p,n - q} for all p, q. Adapting an argument of Chern, Hirzebruch, and Serre [3] in an obvious way, in this short note we observe that this “Serre symmetry” dimEkp,q=dimEkn−p,n−q\dim E_k^{p,q} = \dim E_k^{n - p,n - q} holds on all subsequent pages of the spectral sequence as well. The argument shows that an analogous statement holds for the Frölicher spectral sequence of an almost complex structure on a nilpotent real Lie group as considered by Cirici and Wilson in [4].
format article
author Milivojević Aleksandar
author_facet Milivojević Aleksandar
author_sort Milivojević Aleksandar
title Another proof of the persistence of Serre symmetry in the Frölicher spectral sequence
title_short Another proof of the persistence of Serre symmetry in the Frölicher spectral sequence
title_full Another proof of the persistence of Serre symmetry in the Frölicher spectral sequence
title_fullStr Another proof of the persistence of Serre symmetry in the Frölicher spectral sequence
title_full_unstemmed Another proof of the persistence of Serre symmetry in the Frölicher spectral sequence
title_sort another proof of the persistence of serre symmetry in the frölicher spectral sequence
publisher De Gruyter
publishDate 2020
url https://doaj.org/article/c27b854218274db4a920adca1e761217
work_keys_str_mv AT milivojevicaleksandar anotherproofofthepersistenceofserresymmetryinthefrolicherspectralsequence
_version_ 1718381284102766592