Another proof of the persistence of Serre symmetry in the Frölicher spectral sequence
Serre’s duality theorem implies a symmetry between the Hodge numbers, hp,q = hn−p,n−q, on a compact complex n–manifold. Equivalently, the first page of the associated Frölicher spectral sequence satisfies dimE1p,q=dimE1n−p,n−q\dim E_1^{p,q} = \dim E_1^{n - p,n - q} for all p, q. Adapting an argument...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c27b854218274db4a920adca1e761217 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c27b854218274db4a920adca1e761217 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:c27b854218274db4a920adca1e7612172021-12-02T17:14:47ZAnother proof of the persistence of Serre symmetry in the Frölicher spectral sequence2300-744310.1515/coma-2020-0008https://doaj.org/article/c27b854218274db4a920adca1e7612172020-03-01T00:00:00Zhttps://doi.org/10.1515/coma-2020-0008https://doaj.org/toc/2300-7443Serre’s duality theorem implies a symmetry between the Hodge numbers, hp,q = hn−p,n−q, on a compact complex n–manifold. Equivalently, the first page of the associated Frölicher spectral sequence satisfies dimE1p,q=dimE1n−p,n−q\dim E_1^{p,q} = \dim E_1^{n - p,n - q} for all p, q. Adapting an argument of Chern, Hirzebruch, and Serre [3] in an obvious way, in this short note we observe that this “Serre symmetry” dimEkp,q=dimEkn−p,n−q\dim E_k^{p,q} = \dim E_k^{n - p,n - q} holds on all subsequent pages of the spectral sequence as well. The argument shows that an analogous statement holds for the Frölicher spectral sequence of an almost complex structure on a nilpotent real Lie group as considered by Cirici and Wilson in [4].Milivojević AleksandarDe Gruyterarticleserre symmetryfrölicher spectral sequence32q9953c56MathematicsQA1-939ENComplex Manifolds, Vol 7, Iss 1, Pp 141-144 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
serre symmetry frölicher spectral sequence 32q99 53c56 Mathematics QA1-939 |
spellingShingle |
serre symmetry frölicher spectral sequence 32q99 53c56 Mathematics QA1-939 Milivojević Aleksandar Another proof of the persistence of Serre symmetry in the Frölicher spectral sequence |
description |
Serre’s duality theorem implies a symmetry between the Hodge numbers, hp,q = hn−p,n−q, on a compact complex n–manifold. Equivalently, the first page of the associated Frölicher spectral sequence satisfies dimE1p,q=dimE1n−p,n−q\dim E_1^{p,q} = \dim E_1^{n - p,n - q} for all p, q. Adapting an argument of Chern, Hirzebruch, and Serre [3] in an obvious way, in this short note we observe that this “Serre symmetry” dimEkp,q=dimEkn−p,n−q\dim E_k^{p,q} = \dim E_k^{n - p,n - q} holds on all subsequent pages of the spectral sequence as well. The argument shows that an analogous statement holds for the Frölicher spectral sequence of an almost complex structure on a nilpotent real Lie group as considered by Cirici and Wilson in [4]. |
format |
article |
author |
Milivojević Aleksandar |
author_facet |
Milivojević Aleksandar |
author_sort |
Milivojević Aleksandar |
title |
Another proof of the persistence of Serre symmetry in the Frölicher spectral sequence |
title_short |
Another proof of the persistence of Serre symmetry in the Frölicher spectral sequence |
title_full |
Another proof of the persistence of Serre symmetry in the Frölicher spectral sequence |
title_fullStr |
Another proof of the persistence of Serre symmetry in the Frölicher spectral sequence |
title_full_unstemmed |
Another proof of the persistence of Serre symmetry in the Frölicher spectral sequence |
title_sort |
another proof of the persistence of serre symmetry in the frölicher spectral sequence |
publisher |
De Gruyter |
publishDate |
2020 |
url |
https://doaj.org/article/c27b854218274db4a920adca1e761217 |
work_keys_str_mv |
AT milivojevicaleksandar anotherproofofthepersistenceofserresymmetryinthefrolicherspectralsequence |
_version_ |
1718381284102766592 |