Removal of aqueous Cr(VI) by magnetic biochar derived from bagasse

Abstract We prepared a novel adsorbent functionalized by bagasse magnetic biochar (BMBC). To study the removal behaviors and mechanisms of Cr(VI) by BMBC, batch adsorption experiments were conducted by modifying variables, such as pH, adsorption time, BMBC dosages, initial Cr concentration, co-exist...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Meina Liang, Yanmei Ding, Qing Zhang, Dunqiu Wang, Huanhuan Li, Lin Lu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c282e2cc609643cf953926801c828a09
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c282e2cc609643cf953926801c828a09
record_format dspace
spelling oai:doaj.org-article:c282e2cc609643cf953926801c828a092021-12-02T15:11:51ZRemoval of aqueous Cr(VI) by magnetic biochar derived from bagasse10.1038/s41598-020-78142-32045-2322https://doaj.org/article/c282e2cc609643cf953926801c828a092020-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-78142-3https://doaj.org/toc/2045-2322Abstract We prepared a novel adsorbent functionalized by bagasse magnetic biochar (BMBC). To study the removal behaviors and mechanisms of Cr(VI) by BMBC, batch adsorption experiments were conducted by modifying variables, such as pH, adsorption time, BMBC dosages, initial Cr concentration, co-existing ions, and ionic strength, and characterizing BMBC before and after Cr(VI) adsorption. BMBC was primarily composed of Fe2O3 and Fe3O4 on bagasse boichar with an amorphous structure. The specific surface area of BMBC was 81.94 m2 g−1, and the pHpzc of BMBC was 6.2. The fabricated BMBC showed high adsorption performance of Cr(VI) in aqueous solution. The maximum Cr(VI) adsorption capacity of BMBC was 29.08 mg g−1 at 25 ºC, which was much higher than that of conventional biochar sorbents. The adsorption process followed pseudo-second-order kinetics and could be explained by the involvement of the Langmuir isotherm in monolayer adsorption. The crystalline structure of Fe3O4 in the BMBC changed slightly during the adsorption process; Fe3O4 improved the adsorption of Cr(VI) on BMB. The desorption capacity of Cr(VI) was 8.21 mg g−1 when 0.2 mol L−1 NaOH was used as the desorption solution. After being reused three times, the removal efficiency is still as high as 80.36%.Meina LiangYanmei DingQing ZhangDunqiu WangHuanhuan LiLin LuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-13 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Meina Liang
Yanmei Ding
Qing Zhang
Dunqiu Wang
Huanhuan Li
Lin Lu
Removal of aqueous Cr(VI) by magnetic biochar derived from bagasse
description Abstract We prepared a novel adsorbent functionalized by bagasse magnetic biochar (BMBC). To study the removal behaviors and mechanisms of Cr(VI) by BMBC, batch adsorption experiments were conducted by modifying variables, such as pH, adsorption time, BMBC dosages, initial Cr concentration, co-existing ions, and ionic strength, and characterizing BMBC before and after Cr(VI) adsorption. BMBC was primarily composed of Fe2O3 and Fe3O4 on bagasse boichar with an amorphous structure. The specific surface area of BMBC was 81.94 m2 g−1, and the pHpzc of BMBC was 6.2. The fabricated BMBC showed high adsorption performance of Cr(VI) in aqueous solution. The maximum Cr(VI) adsorption capacity of BMBC was 29.08 mg g−1 at 25 ºC, which was much higher than that of conventional biochar sorbents. The adsorption process followed pseudo-second-order kinetics and could be explained by the involvement of the Langmuir isotherm in monolayer adsorption. The crystalline structure of Fe3O4 in the BMBC changed slightly during the adsorption process; Fe3O4 improved the adsorption of Cr(VI) on BMB. The desorption capacity of Cr(VI) was 8.21 mg g−1 when 0.2 mol L−1 NaOH was used as the desorption solution. After being reused three times, the removal efficiency is still as high as 80.36%.
format article
author Meina Liang
Yanmei Ding
Qing Zhang
Dunqiu Wang
Huanhuan Li
Lin Lu
author_facet Meina Liang
Yanmei Ding
Qing Zhang
Dunqiu Wang
Huanhuan Li
Lin Lu
author_sort Meina Liang
title Removal of aqueous Cr(VI) by magnetic biochar derived from bagasse
title_short Removal of aqueous Cr(VI) by magnetic biochar derived from bagasse
title_full Removal of aqueous Cr(VI) by magnetic biochar derived from bagasse
title_fullStr Removal of aqueous Cr(VI) by magnetic biochar derived from bagasse
title_full_unstemmed Removal of aqueous Cr(VI) by magnetic biochar derived from bagasse
title_sort removal of aqueous cr(vi) by magnetic biochar derived from bagasse
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/c282e2cc609643cf953926801c828a09
work_keys_str_mv AT meinaliang removalofaqueouscrvibymagneticbiocharderivedfrombagasse
AT yanmeiding removalofaqueouscrvibymagneticbiocharderivedfrombagasse
AT qingzhang removalofaqueouscrvibymagneticbiocharderivedfrombagasse
AT dunqiuwang removalofaqueouscrvibymagneticbiocharderivedfrombagasse
AT huanhuanli removalofaqueouscrvibymagneticbiocharderivedfrombagasse
AT linlu removalofaqueouscrvibymagneticbiocharderivedfrombagasse
_version_ 1718387658754883584