A Compound Poisson Perspective of Ewens–Pitman Sampling Model
The Ewens–Pitman sampling model (EP-SM) is a distribution for random partitions of the set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mn>1</mn><mo>,</mo>...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c29a9a698205469799d8bd91f482efb0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:c29a9a698205469799d8bd91f482efb0 |
---|---|
record_format |
dspace |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Berry–Esseen type theorem Ewens–Pitman sampling model exchangeable random partitions log-series compound poisson sampling model Mittag–Leffler distribution function negative binomial compound poisson sampling model Mathematics QA1-939 |
spellingShingle |
Berry–Esseen type theorem Ewens–Pitman sampling model exchangeable random partitions log-series compound poisson sampling model Mittag–Leffler distribution function negative binomial compound poisson sampling model Mathematics QA1-939 Emanuele Dolera Stefano Favaro A Compound Poisson Perspective of Ewens–Pitman Sampling Model |
description |
The Ewens–Pitman sampling model (EP-SM) is a distribution for random partitions of the set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></semantics></math></inline-formula>, with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi></mrow></semantics></math></inline-formula>, which is indexed by real parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> such that either <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>></mo><mo>−</mo><mi>α</mi></mrow></semantics></math></inline-formula>, or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><mo>−</mo><mi>m</mi><mi>α</mi></mrow></semantics></math></inline-formula> for some <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi></mrow></semantics></math></inline-formula>. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, the EP-SM is reduced to the Ewens sampling model (E-SM), which admits a well-known compound Poisson perspective in terms of the log-series compound Poisson sampling model (LS-CPSM). In this paper, we consider a generalisation of the LS-CPSM, referred to as the negative Binomial compound Poisson sampling model (NB-CPSM), and we show that it leads to an extension of the compound Poisson perspective of the E-SM to the more general EP-SM for either <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>, or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula>. The interplay between the NB-CPSM and the EP-SM is then applied to the study of the large <i>n</i> asymptotic behaviour of the number of blocks in the corresponding random partitions—leading to a new proof of Pitman’s <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> diversity. We discuss the proposed results and conjecture that analogous compound Poisson representations may hold for the class of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable Poisson–Kingman sampling models—of which the EP-SM is a noteworthy special case. |
format |
article |
author |
Emanuele Dolera Stefano Favaro |
author_facet |
Emanuele Dolera Stefano Favaro |
author_sort |
Emanuele Dolera |
title |
A Compound Poisson Perspective of Ewens–Pitman Sampling Model |
title_short |
A Compound Poisson Perspective of Ewens–Pitman Sampling Model |
title_full |
A Compound Poisson Perspective of Ewens–Pitman Sampling Model |
title_fullStr |
A Compound Poisson Perspective of Ewens–Pitman Sampling Model |
title_full_unstemmed |
A Compound Poisson Perspective of Ewens–Pitman Sampling Model |
title_sort |
compound poisson perspective of ewens–pitman sampling model |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/c29a9a698205469799d8bd91f482efb0 |
work_keys_str_mv |
AT emanueledolera acompoundpoissonperspectiveofewenspitmansamplingmodel AT stefanofavaro acompoundpoissonperspectiveofewenspitmansamplingmodel AT emanueledolera compoundpoissonperspectiveofewenspitmansamplingmodel AT stefanofavaro compoundpoissonperspectiveofewenspitmansamplingmodel |
_version_ |
1718431909180080128 |
spelling |
oai:doaj.org-article:c29a9a698205469799d8bd91f482efb02021-11-11T18:21:00ZA Compound Poisson Perspective of Ewens–Pitman Sampling Model10.3390/math92128202227-7390https://doaj.org/article/c29a9a698205469799d8bd91f482efb02021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2820https://doaj.org/toc/2227-7390The Ewens–Pitman sampling model (EP-SM) is a distribution for random partitions of the set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></semantics></math></inline-formula>, with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi></mrow></semantics></math></inline-formula>, which is indexed by real parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> such that either <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>></mo><mo>−</mo><mi>α</mi></mrow></semantics></math></inline-formula>, or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>=</mo><mo>−</mo><mi>m</mi><mi>α</mi></mrow></semantics></math></inline-formula> for some <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>∈</mo><mi mathvariant="double-struck">N</mi></mrow></semantics></math></inline-formula>. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>, the EP-SM is reduced to the Ewens sampling model (E-SM), which admits a well-known compound Poisson perspective in terms of the log-series compound Poisson sampling model (LS-CPSM). In this paper, we consider a generalisation of the LS-CPSM, referred to as the negative Binomial compound Poisson sampling model (NB-CPSM), and we show that it leads to an extension of the compound Poisson perspective of the E-SM to the more general EP-SM for either <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></semantics></math></inline-formula>, or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula>. The interplay between the NB-CPSM and the EP-SM is then applied to the study of the large <i>n</i> asymptotic behaviour of the number of blocks in the corresponding random partitions—leading to a new proof of Pitman’s <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> diversity. We discuss the proposed results and conjecture that analogous compound Poisson representations may hold for the class of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable Poisson–Kingman sampling models—of which the EP-SM is a noteworthy special case.Emanuele DoleraStefano FavaroMDPI AGarticleBerry–Esseen type theoremEwens–Pitman sampling modelexchangeable random partitionslog-series compound poisson sampling modelMittag–Leffler distribution functionnegative binomial compound poisson sampling modelMathematicsQA1-939ENMathematics, Vol 9, Iss 2820, p 2820 (2021) |