An inertial forward–backward algorithm for the minimization of the sum of two nonconvex functions
We propose a forward–backward proximal-type algorithm with inertial/memory effects for minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting. Every sequence of iterates generated by the algorithm converges to a critical point of the objective function provided an appr...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c2b91391253b4ec88bc07e3edc72bbe7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We propose a forward–backward proximal-type algorithm with inertial/memory effects for minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting. Every sequence of iterates generated by the algorithm converges to a critical point of the objective function provided an appropriate regularization of the objective satisfies the Kurdyka-Łojasiewicz inequality, which is for instance fulfilled for semi-algebraic functions. We illustrate the theoretical results by considering two numerical experiments: the first one concerns the ability of recovering the local optimal solutions of nonconvex optimization problems, while the second one refers to the restoration of a noisy blurred image. |
---|