An inertial forward–backward algorithm for the minimization of the sum of two nonconvex functions
We propose a forward–backward proximal-type algorithm with inertial/memory effects for minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting. Every sequence of iterates generated by the algorithm converges to a critical point of the objective function provided an appr...
Enregistré dans:
Auteurs principaux: | Radu Ioan Boţ, Ernö Robert Csetnek, Szilárd Csaba László |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2016
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/c2b91391253b4ec88bc07e3edc72bbe7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A modification of the αBB method for box-constrained optimization and an application to inverse kinematics
par: Gabriele Eichfelder, et autres
Publié: (2016) -
Sufficient pruning conditions for MINLP in gas network design
par: Jesco Humpola, et autres
Publié: (2017) -
Joint location and pricing within a user-optimized environment
par: Teodora Dan, et autres
Publié: (2020) -
On global optimization with indefinite quadratics
par: Marcia Fampa, et autres
Publié: (2017) -
An interior-point method for nonlinear optimization problems with locatable and separable nonsmoothness
par: Martin Schmidt
Publié: (2015)