An inertial forward–backward algorithm for the minimization of the sum of two nonconvex functions
We propose a forward–backward proximal-type algorithm with inertial/memory effects for minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting. Every sequence of iterates generated by the algorithm converges to a critical point of the objective function provided an appr...
Guardado en:
Autores principales: | Radu Ioan Boţ, Ernö Robert Csetnek, Szilárd Csaba László |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c2b91391253b4ec88bc07e3edc72bbe7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A modification of the αBB method for box-constrained optimization and an application to inverse kinematics
por: Gabriele Eichfelder, et al.
Publicado: (2016) -
Sufficient pruning conditions for MINLP in gas network design
por: Jesco Humpola, et al.
Publicado: (2017) -
Joint location and pricing within a user-optimized environment
por: Teodora Dan, et al.
Publicado: (2020) -
On global optimization with indefinite quadratics
por: Marcia Fampa, et al.
Publicado: (2017) -
An interior-point method for nonlinear optimization problems with locatable and separable nonsmoothness
por: Martin Schmidt
Publicado: (2015)