Water leak detection based on convolutional neural network using actual leak sounds and the hold-out method
The main purpose of this study was to investigate whether machine learning can be used to detect leak sounds in the field. A method for detecting water leaks was developed using a convolutional neural network (CNN), after taking recurrence plots and visualising the time series as input data. In coll...
Guardado en:
Autores principales: | Y. W. Nam, Y. Arai, T. Kunizane, A. Koizumi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c2ca1ab646d24faab4a5f480ce3a704a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application of fiber optics in water distribution networks for leak detection and localization: a mixed methodology-based review
por: Kabir Ibrahim, et al.
Publicado: (2021) -
Case study of leak detection based on Gaussian function in experimental viscoelastic water pipeline
por: Iraj Rezapour, et al.
Publicado: (2021) -
Review of model-based and data-driven approaches for leak detection and location in water distribution systems
por: Zukang Hu, et al.
Publicado: (2021) -
A Nelder–Mead algorithm-based inverse transient analysis for leak detection and sizing in a single pipe
por: Oussama Choura, et al.
Publicado: (2021) -
Image Processing Technique for Improving the Sensitivity of Mechanical Register Water Meters to Very Small Leaks
por: Marco Carratù, et al.
Publicado: (2021)