DOM-mediated membrane retention of fluoroquinolone as revealed by fluorescence quenching properties

Abstract In this study, membrane filtration tests showed that the membrane rejection degree of difloxacin hydrochloride (DFHC) increased significantly in the presence of Suwannee River DOM or Aldrich humic acid (2–10 mg-C/L). Titration experiments showed that the excitation and emission of Peak R be...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shuang Liang, Li Lu, Fangang Meng
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/c2cd9fddf8a9479ea0cc353c0b4394b6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:c2cd9fddf8a9479ea0cc353c0b4394b6
record_format dspace
spelling oai:doaj.org-article:c2cd9fddf8a9479ea0cc353c0b4394b62021-12-02T15:05:17ZDOM-mediated membrane retention of fluoroquinolone as revealed by fluorescence quenching properties10.1038/s41598-017-05635-z2045-2322https://doaj.org/article/c2cd9fddf8a9479ea0cc353c0b4394b62017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-05635-zhttps://doaj.org/toc/2045-2322Abstract In this study, membrane filtration tests showed that the membrane rejection degree of difloxacin hydrochloride (DFHC) increased significantly in the presence of Suwannee River DOM or Aldrich humic acid (2–10 mg-C/L). Titration experiments showed that the excitation and emission of Peak R belonging to DFHC exhibited blue shifts by 5 nm and 10 nm, respectively, in the presence of DOM. The presence of DFHC can, in turn, lead to more significant overlapping of the fluorescence peaks of the Suwannee River DOM and Aldrich humic acid. The parallel factor analysis (PARAFAC) of the excitation-emission matrix (EEM) spectra can well decompose the components belonging to DFHC from the DOM + DFHC mixtures. The maximum fluorescence intensity (FI max) of the antibiotic-like component (C1) sharply decreased upon the initial addition of DOM. More specifically, the Aldrich humic acid showed a larger quenching effect on DFHC than the Suwannee River DOM. The stability constants (K M ) obtained by the Ryan and Weber model also corroborated that the Aldrich humic acid had a much higher binding stability (K M = 4.07 L/mg) than the Suwannee River DOM (K M = 0.86 L/mg). These results have great implications for our understanding of the membrane filtration behavior of trace contaminants in natural waters.Shuang LiangLi LuFangang MengNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Shuang Liang
Li Lu
Fangang Meng
DOM-mediated membrane retention of fluoroquinolone as revealed by fluorescence quenching properties
description Abstract In this study, membrane filtration tests showed that the membrane rejection degree of difloxacin hydrochloride (DFHC) increased significantly in the presence of Suwannee River DOM or Aldrich humic acid (2–10 mg-C/L). Titration experiments showed that the excitation and emission of Peak R belonging to DFHC exhibited blue shifts by 5 nm and 10 nm, respectively, in the presence of DOM. The presence of DFHC can, in turn, lead to more significant overlapping of the fluorescence peaks of the Suwannee River DOM and Aldrich humic acid. The parallel factor analysis (PARAFAC) of the excitation-emission matrix (EEM) spectra can well decompose the components belonging to DFHC from the DOM + DFHC mixtures. The maximum fluorescence intensity (FI max) of the antibiotic-like component (C1) sharply decreased upon the initial addition of DOM. More specifically, the Aldrich humic acid showed a larger quenching effect on DFHC than the Suwannee River DOM. The stability constants (K M ) obtained by the Ryan and Weber model also corroborated that the Aldrich humic acid had a much higher binding stability (K M = 4.07 L/mg) than the Suwannee River DOM (K M = 0.86 L/mg). These results have great implications for our understanding of the membrane filtration behavior of trace contaminants in natural waters.
format article
author Shuang Liang
Li Lu
Fangang Meng
author_facet Shuang Liang
Li Lu
Fangang Meng
author_sort Shuang Liang
title DOM-mediated membrane retention of fluoroquinolone as revealed by fluorescence quenching properties
title_short DOM-mediated membrane retention of fluoroquinolone as revealed by fluorescence quenching properties
title_full DOM-mediated membrane retention of fluoroquinolone as revealed by fluorescence quenching properties
title_fullStr DOM-mediated membrane retention of fluoroquinolone as revealed by fluorescence quenching properties
title_full_unstemmed DOM-mediated membrane retention of fluoroquinolone as revealed by fluorescence quenching properties
title_sort dom-mediated membrane retention of fluoroquinolone as revealed by fluorescence quenching properties
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/c2cd9fddf8a9479ea0cc353c0b4394b6
work_keys_str_mv AT shuangliang dommediatedmembraneretentionoffluoroquinoloneasrevealedbyfluorescencequenchingproperties
AT lilu dommediatedmembraneretentionoffluoroquinoloneasrevealedbyfluorescencequenchingproperties
AT fangangmeng dommediatedmembraneretentionoffluoroquinoloneasrevealedbyfluorescencequenchingproperties
_version_ 1718388919984193536