Learning stable and predictive network-based patterns of schizophrenia and its clinical symptoms
Neuroimaging: Brain connectivity pattern predicts symptom severity Brain network analyses from functional magnetic resonance imaging (fMRI) data may help diagnose schizophrenia and predict symptom severity. Detecting neuroimaging patterns requires large-scale analysis across multiple data sets. Mina...
Guardado en:
Autores principales: | Mina Gheiratmand, Irina Rish, Guillermo A. Cecchi, Matthew R. G. Brown, Russell Greiner, Pablo I. Polosecki, Pouya Bashivan, Andrew J. Greenshaw, Rajamannar Ramasubbu, Serdar M. Dursun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/c2d7e64345e8436c975666a48119346f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Avolition as the core negative symptom in schizophrenia: relevance to pharmacological treatment development
por: Gregory P. Strauss, et al.
Publicado: (2021) -
Assessing the relationship between routine and schizophrenia symptoms with passively sensed measures of behavioral stability
por: Joy He-Yueya, et al.
Publicado: (2020) -
Schizophrenia and toxoplasmosis: association with catatonic symptoms
por: Dmitry V. Romanov, et al.
Publicado: (2020) -
Cognitive impairment in schizophrenia: relationships with cortical thickness in fronto-temporal regions, and dissociability from symptom severity
por: Erkan Alkan, et al.
Publicado: (2021) -
Antipsychotics for negative and positive symptoms of schizophrenia: dose-response meta-analysis of randomized controlled acute phase trials
por: Michel Sabe, et al.
Publicado: (2021)